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Introduction

The desirable bulk properties of diamond, coupled with its 
ability to form a negative electron affinity (NEA) surface is of 
technological interest for numerous electron emission appli­
cations including photodiodes [1], electron sources [2], sec­
ondary electron emission [3] and renewable energy generation 
[4]. Furthermore, low work function diamond devices have 
potential for surface transfer doping applications [5]. In a mat­
erial with an NEA, the conduction band minimum (CBM) is 
higher in energy than the surrounding vacuum, leading to vir­
tually barrierless electron emission when electrons are excited 
into the conduction band (figure 1). To form an NEA material, 
it is necessary to terminate the surface with atoms or groups 
of atoms that are electropositive relative to the bulk material, 
forming an electric dipole perpendicular to the surface with 
positive charge outermost. For diamond, simple H termination 
gives an NEA for each of the (1 0 0), (1 1 1) and (1 1 0) surfaces 
[6–8]. However, H­terminated diamond surfaces suffer from 

hydrogen desorption at elevated temperatures (≳700 °C) [9]. 
This makes H­terminated diamond unsuitable for high­temper­
ature applications, such as thermionic energy converters [4], 
and so there is an extensive search for alternatives with which 
to terminate diamond that provide high NEA whilst remaining 
stable at thermionic operating temperatures.

Previous experimental and computational studies of NEA 
surfaces on diamond include the use of group I and II metals 
[10–13] and first­row transition metals (TMs) [14–19] as the 
electropositive species, with monolayer or sub­monolayer 
coverage on bare or oxidised diamond surfaces. Group I ele­
ments have long been known to exhibit NEA characteris­
tics on diamond, but larger adsorbed group I elements have 
low thermal stability which limits their usefulness at higher 
temper atures. For example, despite an extremely low work 
function of ~1.5 eV, the CsO­terminated diamond surface 
loses Cs through desorption, and so the NEA is lost above 
~400 °C [10]. Thus, recent computational and experimental 
work has concentrated on elements that can provide a more 
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robust surface in addition to NEA, focusing on small group I 
and II metals, such as Li and Mg [20–22]. Experimental work 
with certain TMs shows NEA emerges from deposition of 
thin (<10 Å) layers onto bare or oxidised diamond surfaces  
[14–17]. The magnitude of the NEA varies with the TM and 
layer thickness. Computational work has also predicted NEA 
with various first­row TMs, including Cu, Ni, Ti and Zn, on 
both bare and O­terminated diamond surfaces, with results sug­
gesting that carbide­forming TMs give a larger NEA [18, 23].

Aluminium on the diamond surface has thus far been 
omitted from NEA studies, even though Al forms a carbide 
and bonds sufficiently well to a diamond surface to act as 
either Ohmic or Schottky contacts for diamond­based devices 
[24]. Al2O3 on diamond is a candidate material for device 
interfaces in MOSFETs [25] and MOSCAPs [26] and addi­
tionally for passivation of the p­type conductive surface found 
on H­terminated diamond that results from surface transfer 
doping [27]. However, these are typically thicker films than 
what is required to give NEA. In this work we show that up 
to 1 ML of aluminium on bare and O­terminated diamond has 
considerable potential for NEA devices.

Method

Plane­wave density functional theory (DFT) calculations 
were carried out using the Cambridge Serial Total Energy 
Package (CASTEP) code [28]. The diamond slab consisted of 
14 carbon layers, sufficient to represent bulk diamond at the 
centre. The slab is periodic in the x and y directions and termi­
nated on both sides by a 2  ×  2 supercell of the (1 0 0) surface. 
The slab width was fixed at 5.05 Å  ×  5.05 Å with a vacuum 
gap of 20–25 Å separating repeating slabs, chosen such that 
the electrostatic potential had fully decayed in the vacuum. 
A basis set of plane waves with an energy cut­off of 700 eV, 
the Perdew–Burke–Ernzerhof (PBE) generalised gradient 
approximation (GGA) for the exchange­correlation functional 
[29] and Vanderbilt pseudopotentials [30] were used in all 
calculations. Density­of­states calculations were calculated 
using the OptaDOS code [31] with adaptive broadening and 
DOS spacing of 0.07 eV. The Brillouin zone was sampled by a 
6  ×  6  ×  1 Monkhorst–Pack k­point grid [32] for energy mini­
misation steps and a 12  ×  12  ×  1 k­point grid for DOS calcul­
ations. The energy of the slab was minimised with respect to 

all atomic positions. The tolerances for convergence of ionic 
forces and total energy were 0.05 eV Å−1 and 2  ×  10−5 eV/
atom, respectively.

The ionisation energy I was calculated using the method 
of Fall et  al [33], shown in equation  (1) as the difference 
between vacuum and valence band maximum (VBM) ener­
gies. The electron affinity (EA) χ is calculated by subtraction 
of the experimental band gap, Eg, from the ionisation energy, 
as shown in equation (2).

I = Evac − EVBM = Evac − (Vslab + EVBM,bulk − Vbulk) (1)

χ = I − Eg. (2)

Evac is the energy of the vacuum level, EVBM the valence 
band maximum, Vslab the average slab potential, EVBM, bulk 
the valence band maximum calculated for bulk diamond, and 
Vbulk the average potential energy in the bulk. The difference 
between EVBM, bulk and Vbulk has been calculated previously 
[34]. The experimental value of the band gap, Eg, of 5.47 eV 
was used because the GGA method underestimates the band 
gap of diamond [18].

The energy of adsorption Eads was calculated from the 
energy of the structure containing both diamond slab and 
adsorbates Etotal by subtraction of the diamond slab energy 
Eslab with no adsorbate, and the energy of an isolated adsorbate 
atom Eat multiplied by the number of adsorbate atoms N. This 
divided by the total number of adsorbate atoms gives the 
energy per adsorbate (equation (3)). A negative Eads indicates 
exothermic adsorption.

Eads = (Etotal − Eslab − NEat)/N. (3)

For validation purposes, calculations were initially per­
formed on the bare, H­ and O­terminated diamond surfaces, 
and compared with previous published calculations. Table 1 
shows that calculated energies and bond lengths are in good 
agreement with previous work. Values for adsorption ener­
gies are the most variable as they are particularly sensitive to 
the computational parameters, such as functionals used and 
the basis set. For diamond, DFT calculations generally give 
larger electron affinities than those measured experimentally 
[35]. This is related not only to the approximations in the DFT 
method, but also uncertainty in the surface coverages achieved 
experimentally.

Geometry optimisation

In this work, we define one atom per surface unit cell as con­
stituting a monolayer (ML), and thus four atoms constitute  
1 ML of the 2  ×  2 supercell used here to represent the dia­
mond surface. Both the bare and the oxygen­terminated sur­
face were considered.

Al addition to the bare diamond surface

Upon geometry optimisation, the bare diamond surface recon­
structs to a (2  ×  1) arrangement, forming dimer rows on the 
surface (figure 2). Between 1 and 4 Al atoms were added 
to both sides of the relaxed bare diamond slab, each atom 

Figure 1. NEA arises when the conduction band minimum (CBM) 
is higher in energy than the surrounding vacuum. Electrons in 
the valence band, with a maximum energy at the valence band 
maximum (VBM) of EVBM, are excited into the conduction band by 
photon absorption, thermal collisions or electric fields.
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representing 0.25 ML coverage. For the bare (2  ×  1) recon­
structed surface, four high­symmetry positions have been 
defined: the pedestal (HH), bridge (HB), valley bridge (T3) 
and cave (T4) sites (figure 2) [13]. Above 0.25 ML coverage, 
combinations of these sites are considered. For 0.5 ML cov­
erage, Al atoms were positioned either in identical sites, rep­
resenting rows perpendicular to the carbon dimer bonds, in 
pairs of sites parallel to the carbon dimer bonds for one half of 
the 2  ×  2 supercell, or in a (√2  ×  √2) configuration where Al 
atoms are at diagonals to the supercell. For 1 ML coverage, Al 
atoms were in two sets of identical sites.

Table 2 displays the results for these surface arrangements 
for Al on the bare diamond surface, while the lowest energy 
positions for different surface coverages are shown in figure 3. 
For 0.25 and 0.5 ML coverage, the T4 site was found to be 
lowest in energy, while at 1 ML coverage the lowest energy 
configuration came from a parallelogram arrangement of Al 
atoms outside high symmetry sites, formed here by relaxation 
from the HH  +  T3 positions. This gave a hexagonal structure 
of Al atoms in the same plane, with Al–Al bond lengths of 
2.52 Å in the y direction and 2.74–2.91 Å otherwise (figure 
3(c)). This geometry is similar to that in the hexagonal (1 1 1) 
plane of bulk Al metal in which the Al–Al nearest neighbour 
distance is 2.86 Å; here Al–Al bonds are shorter because of 
epitaxial bonding of Al with the outermost carbon atoms.

The lengthening of the carbon dimer from 1.38 Å for the 
bare surface to between 1.63–1.85 Å suggests a change from 
a double to a very extended single bond. This is accompanied 
by a substantial reduction in Mulliken [42] bond population 
of the carbon dimer from 1.36 before Al addition to 0.52–0.78 
after. The bond populations between Al and C atoms in the 
surface dimer lie between 0.02 and 0.67 and there is a correla­
tion with the magnitude of the adsorption energies. Mulliken 
population analysis shows Al gains a positive charge of up to 
0.9e, 0.8e and 0.4e for 0.25, 0.5 and 1 ML, respectively. The 
majority of negative charge is located on carbon atoms in the 
dimer row. There is a noticeable distinction between Al at the 
4­coordinated HH and T3 sites and the 2­coordinated HB and 
T4 sites. The bonding at the 4­coordinate sites possess larger 
Mulliken charges but smaller Al–Cdimer Mulliken bond popu­
lations and so we define the 4­coordinate sites as ‘ionic’ and 
the 2­coordinate sites as ‘covalent’. Al preferentially bonds 
to the 2­coordinate, more covalent sites, shown by larger Eads 
values.

EA is strongly affected by the positioning of the Al atoms, 
with covalent sites showing more negative EA. Most sites 
show an NEA ranging from  −0.1 to almost  −1.5 eV, but for 
0.5 ML both the linear and (√2  ×  √2) arrangement for the 
HH  +  T3 configuration have positive EA. Comparing Al with 
the TMs studied by Tiwari et al [18, 23] we find the EA of 
Al is, in general, more negative than those for Cu, Ni and V, 
and the variation with position smaller. Whilst they find Ti 
can possess a negative electron affinity larger than Al, for 0.5 
and 1 ML coverages of Ti the most stable site has positive 
EA. Al has, generally, a larger adsorption energy than Cu, 
about the same as Ni, and smaller than V and Ti. The lowest 
energy adsorption sites for Al are different to these TMs—for 

the Al­adsorbed bare surface T4 (covalent) sites are preferred 
over T3 (ionic) sites at  <1 ML coverages. It is also worth 
noting that overall the magnitude of the adsorption energies 
for Al are smaller than the adsorption energy for H on the bare 
surface (table 1).

Al addition to the O-terminated surface

The clean O­terminated surface has two possible low­energy 
configurations: the ether arrangement, where the oxygen 
bridges between two adjacent surface carbons, and the ketone 
arrangement, involving a C=O double bond normal to the sur­
face (figure 4). These structures are similar in energy so both 
were considered for this study. In both cases, the unrecon­
structed (1  ×  1) O­terminated surface has only two high­sym­
metry positions for adsorbate atoms: the 4­coordinate oxygen 
pedestal (OP) and 2­coordinate oxygen bridge (OB) sites 
(figure 4(c)). Additionally, Al was placed at the high­sym­
metry sites of a (2  ×  1) reconstructed O­terminated surface, 
which, while not stable for the clean surface, are stabilised by 
adsorbate addition. The procedure for addition of Al atoms for 
coverages above 0.25 ML was the same as described previ­
ously for (2  ×  1) sites, and an analogous procedure was used 
for addition to the (1  ×  1) surface.

Table 3 shows results for Al addition to the (2  ×  1) 
reconstructed surface and whether this final configuration 
is obtained starting from addition to either ether or ketone 
O­terminated diamond. The minimum energy structures 
are shown in figure  5. Al bonds only weakly to the ether 
O­terminated surfaces, with the OB site lower in energy than 
OP. The only reconstruction observed is when the Al–Al bond 
is perpendicular to dimer rows at 0.5 ML coverage. The 1 ML 
surface is not stable.

In contrast to the ether­terminated surfaces, most config­
urations for the ketone O­termination relax into the (2  ×  1) 
reconstructed surface. The weak ketone π­bond is broken 
by the presence of Al, but not the strong ether σ­bond. The  
0.25 ML OP ketone configuration moves to the T3 position, 
and Al atoms at 0.5 ML coverage in OP positions relax into 
either the HH, HH  +  T3 (linear) or HH  +  T3 (√2  ×  √2) 
positions depending on the original arrangement. The HB site 
for  <1 ML addition only causes reconstruction of the dimer 
above which it lies. At 1 ML, Al atoms in the ketone OP and 
OB positions move into the HH  +  T4 and HB  +  T4 positions, 
respectively, although in the case of HH  +  T4, the Al atoms 
in the HH sites are at different heights above the surface. The 
T3 site is the lowest energy site for both 0.25 and 0.5 ML 

Figure 2. Side and plan view of the bare (2  ×  1) reconstructed 
diamond surface. The plan view shows possible high symmetry 
sites for surface adsorbates.

J. Phys.: Condens. Matter 30 (2018) 235002
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coverage, and for both it is formed by relaxation of the struc­
ture involving Al addition to the ketone O­terminated surface.

The clean ether and ketone surfaces have carbon–oxygen 
Mulliken bond populations of 0.57 and 1.21, respectively. 
After Al addition and subsequent relaxation into the sites 
shown in table 3, the C–O bonds have populations in the range 
0.57–0.73, significantly closer to that for a single bond. For 
comparison, Al–O bond populations are in the range 0.1–0.43. 
Mulliken charges on Al are up to 2.16e, 1.58e and 1.08e at 
0.25, 0.5 and 1 ML coverages, respectively. The preferred 
sites for adsorption in these cases are the more ionic HH and 
T3 sites at  <1 ML coverage. However, in general, the ‘cova­
lent’ sites have more negative EA than ‘ionic’ sites.

The electron affinity of the different Al­adsorbed 
O­terminated diamond surfaces are less negative than for addi­
tion to the bare surface, with more positions showing positive 
EA. Adsorption energies are larger than for addition to the 
bare surface. Increased coverage leads to decreased adsorp­
tion energies, the reverse of the trend observed for adsorption 

to the bare surface. This is technologically useful for better 
control of surface coverage and discouragement of island for­
mation. The EA is less negative than observed by O’Donnell 
et al [20] for group I elements on O­terminated diamond, but 
adsorption energies are significantly higher. Compared with 
the transition metals studied by Tiwari et al [19], Al is most 
similar to Ti, with 0.25 ML coverage giving the largest NEA 
for both metals and comparable adsorption energies.

Electronic structure

Projected density­of­states (PDOS) were computed to study 
the effect of metal adsorption on electronic structure. In each 
case, the bulk valence band maximum is set to zero, and states 
originating from different sets of atoms are offset for clarity. 
Bulk carbon atoms are taken from the middle of the diamond 
slab and are not expected to change. The PDOS for surface 
carbon atoms are taken from the dimer row.

Figure 6 shows PDOS spectra for the clean oxygen­
free and (ether) O­terminated diamond surfaces. The extra 
states within the band gap for the bare surface originate 
from π and π* bonds of the dimer rows [23], and, similarly, 
O­termination also introduces inter­bandgap states from 
oxygen lone pairs [43].

Figure 3. Minimum energy positions for (a)–(c) 0.25, 0.5 and 1 ML 
respectively of Al addition to the bare (1 0 0) diamond surface. Side 
and plan views are shown for each.

Figure 4. (a) Ether and (b) ketone arrangements of O­terminated 
diamond. (c) Plan view showing the two high­symmetry positions 
for adsorption on the O­terminated surface.

Table 2. Values of ionisation energy, I, electron affinity, χ, adsorption energy, Eads, and relevant bond lengths, d, calculated for the 
minimum energy positions at different surface coverages of Al on the bare diamond surface. The HH and T3 sites at 0.25 ML coverage 
were not energy minima and so are not included.

Coverage (ML) Structure d(C–C) (Å) d(C–Al) (Å) I (eV) χ (eV) Eads (eV)

0.25 HB 1.40, 1.75 2.00 5.43 −0.04 −3.11
0.25 T4 1.42, 1.70 2.11 5.02 −0.45 −3.60
0.50 HH 1.71 2.19 5.24 −0.23 −3.07
0.50 HB 1.84 2.02 5.10 −0.37 −3.56
0.50 T3 1.68 2.47 5.34 −0.13 −3.28
0.50 T4 1.63 2.18 4.54 −0.93 −3.97
0.50 HH  +  T3 (linear) 1.73 2.33, 2.32 5.51 0.04 −3.17
0.50 HB  +  T4 (linear) 1.45, 1.85 2.35, 2.19 5.30 −0.17 −3.73
0.50 HH  +  T3 (√2  ×  √2) 1.75 2.25, 2.49 5.50 0.03 −3.48
0.50 HB  +  T4 (√2  ×  √2) 1.65, 1.70 2.06, 2.13 5.28 −0.19 −3.56
1.00 HH  +  T3 1.65 2.08, 2.08 4.00 −1.47 −4.11
1.00 HH  +  T4 1.74 2.27, 2.74 4.54 −0.93 −3.83
1.00 HB  +  T3 1.69 2.12, 2.93 4.55 −0.92 −3.78
1.00 HB  +  T4 1.75 2.22, 2.27 4.92 −0.55 −3.87

J. Phys.: Condens. Matter 30 (2018) 235002
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The PDOS spectra for the Al­adsorbed diamond surfaces 
are displayed in figure 7. These were computed for the lowest 
energy structures in tables 2 and 3. The bulk carbon PDOS 
spectra are similar in all cases, as expected. Starting with addi­
tion to the bare surface, all coverages show mixing of Al and 
surface C states indicating covalent bonding. At 0.25 ML cov­
erage the broadness of the surface C DOS is due to there being 
two contributions to the DOS, as Al only interacts with one of 
the C dimers.

Turning to the PDOS for Al on the O­terminated surface, 
the aluminium DOS is considerably different from that of the 
bare surface due to the change from predominantly covalent to 
ionic bonding, consistent with the relative electronegativities 
of carbon and oxygen. The ionic bonding is most pronounced 
at 0.25 ML coverage where there are few occupied Al states 
near the valence band maximum. As the coverage increases, 
the 3s and 3p states of Al, unoccupied at 0.25 ML, move down 

in energy such that they become partially occupied. By 1 ML 
the Al DOS mixes with oxygen states indicating more cova­
lent character; with increasing Al coverage the effective posi­
tive charge on each Al decreases due to the finite capacity for 
the oxygen atoms to accept negative charge. This combination 
of ionic and covalent behaviour, and the different co­ordina­
tions of Al that are present are reflected by the complexity of 
the PDOS.

Table 3. Values of ionisation energy, I, electron affinity, χ, adsorption energy, Eads, and relevant bond lengths, d, calculated for the 
minimum energy positions at different surface coverages of Al on O­terminated diamond. * indicates the particular (1  ×  1) surface that 
forms this structure. (E) and (K) are ether and ketone configurations, respectively. The HB and T4 positions at 0.25 ML coverage and 
HB  +  T4 (√2  ×  √2) at 0.5 ML were not energy minima and so are not included.

Coverage 
(ML) Structure d(C–C) (Å) d(C–O) (Å) d(Al–O) (Å) I (eV) χ (eV) Eads (eV)

0.25 HH 1.70 1.36 1.82 4.11 −1.36 −5.24
0.25 T3 *OP (K) 1.63 1.36 1.78 5.10 −0.37 −6.36
0.50 HH *OP (E, K) 1.66 1.41 1.92 5.94 0.47 −5.61
0.50 HB *OB (K) 1.71 1.35 1.77 4.84 −0.63 −4.62
0.50 T3 *OB (K) 1.64 1.40 1.88 6.53 1.06 −5.99
0.50 T4 1.63 1.34 1.71 5.01 −0.46 −4.71
0.50 HH  +  T3 (linear) *OP (K) 1.64 1.40 1.85, 1.98 6.19 0.72 −5.85
0.50 HB  +  T4 (linear) 1.66 1.39 1.80, 1.88 5.78 0.31 −4.32
0.50 HH  +  T3 (√2  ×  √2) *OP (K) 1.65 1.40 1.88, 2.03 6.60 1.13 −5.85
1.00 HH  +  T3 1.65 1.40 1.92, 3.11 5.35 −0.12 −4.35
1.00 HH  +  T4 *OP (K) 1.66 1.39 1.88, 1.88, 1.99, 2.80 5.02 −0.45 −4.55
1.00 HB  +  T3 1.64 1.41 2.08, 2.09 6.01 0.54 −4.58
1.00 HB  +  T4 *OB (K) 1.64 1.39 1.84, 1.94 5.47 0.00 −4.35

Figure 5. Minimum energy positions for (a)–(c) 0.25, 0.5 and  
1 ML respectively of Al addition to the O­terminated (1 0 0) 
diamond surface. Side and plan views are shown for each.

Figure 6. PDOS spectra evaluated for (a) bare surface and  
(b) O­terminated surface with ether configuration. The dashed 
vertical lines indicate the position of the Fermi level.
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Conclusions

DFT calculations were performed on the adsorption of Al 
onto the (1 0 0) bare and O­terminated diamond surfaces. 
A notable structural difference from previous studies of 
the adsorption of other metals at the bare diamond surface 
is that the preferred coordination number of Al to carbon 
is two, and the bonding at such sites is appreciably cova­
lent in character. By contrast, on the O­terminated surface 
for  <1 ML coverage, Al preferentially binds to sites where 
it is 4­coordinate and the bonding is more ionic. Al–Al 
interactions are important structurally at larger coverages. 
At 1 ML coverage, following relaxation of Al on the bare 
surface, a hexagonal arrangement of Al is lowest in energy, 
whilst for 1 ML coverage on the O­terminated surface, 

Al–Al interactions force some Al atoms further from the 
surface.

Al has relatively large adsorption energies of up to  −4.11 
and  −6.36 eV on the bare and O­terminated surfaces, respec­
tively. NEAs are possible for up to 1 ML coverage; how­
ever, control of atomic position is required as positive EA is 
shown in certain configurations. The magnitude of both NEA 
and adsorption energies for Al is most similar to that of Ti, 
a carbide­forming metal with comparable electronegativity.  
0.25 ML coverage of Al on O­terminated diamond is pre­
dicted to have both NEA and stronger adsorption energies 
than H­terminated diamond regardless of adsorption site, and 
thus provides a possible route to a more temperature­stable 
surface termination. Work is currently underway to try and 
obtain an NEA value for Al on diamond experimentally.

Figure 7. PDOS evaluated for (a)–(c) 0.25, 0.5 and 1 ML Al coverage on the bare diamond surface, and (d)–(f) 0.25, 0.5 and 1 ML Al 
coverage on the O­terminated surface. These are the lowest energy structures from tables 2 and 3. The dashed vertical lines indicate the 
highest occupied states.
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