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Abstract 
 
 
 
A multi-scale simulation approach has been used to study the theoretical 
physical and chemical properties of the chemical vapour deposition (CVD) of 
diamond. A new 3-dimensional kinetic Monte Carlo (kMC) model of CVD 
diamond growth was developed and implemented. Reactive molecular dynamics 
simulations using the empirical valence bond (EVB) approach were used to 
study both the non-equilibrium dissociation and the thermal decomposition of 
CH3 from the (100):(2×1):H surface. 
 
In Chapter 3, the systematic exploration of the input parameter space of the 3-D 
kMC model was completed to determine the sensitivity of the output to changes 
in the input. This was done in order to validate the model and see if the errors in 
energetics used for the rate constants which were obtained from experiments and 
theoretical calculations would produce spurious effects in the kMC model. In this 
validation procedure it was found that the parameter that most affects the 
growth rate and surface morphology of the simulated diamond is the 
concentration of CH3 above the surface. This investigation also reproduced 
results observed experimentally which show that a smoother surface is produced 
with slower growth rates. Finally, for the first time an increase, peak, and 
decrease in growth rates was observed on the (100) surface as the temperature of 
the substrate Ts was increased which agrees with experiment. 
 
The kMC model was used to study the effect that the etching of CH3, the 
adsorption of CH3, and the migration of a CH2 on the surface structure in 
Chapter 4. Three different models of etching where tested with kMC simulations, 
as well as a new model for the adsorption of CH3. The critical nucleus, the 
smallest unetchable configuration that can nucleate a new layer, was found to be 
the 2-block dimer in all cases except for two when the migration was turned off. 
 
In Chapter 5 an analytical reactive potential energy surface was created to study 
the dynamics of methyl dissociation. It was found that the while the non-
equilibrium effects on desorption are non-trivial its rate is dwarfed by the rate of 
the thermal decomposition of CH3 from the (100):(2×1):H surface. 
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  Chapter 1

Introduction 

Diamond has long been prized by human culture as a source of beauty 

when cut and source of value due to its scarcity in nature. However, materials 

scientists and engineers prize diamond due to the potential diamond offers thank 

to its exceptional physical characteristics1.  

1.1. Diamond—more than just a gemstone 

Diamond is a metastable allotrope of carbon, that is to say that it is 

kinetically stable while being thermodynamically unstable. The two most 

common allotropes of carbon found in nature are graphite (Figure 1 (a)) and 

diamond (Figure 1 (b)). At standard temperatures and pressures, there is only a 2 

kJ mol-1 difference in enthalpy between the two with graphite being the lowest 

and thus the thermodynamically stable allotrope of carbon. However, there is a 

large kinetic barrier that means that diamond, once formed, is unlikely to 

decompose 

 

Figure 1-The two most common allotropes of carbon (a) graphite, and (b) diamond 
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to graphite at standard temperature and pressure, thus making it stable. At 298 K 

diamond becomes the more stable allotrope at pressures of around 2 GPa. The 

relation between the different phases of carbon is shown below in Figure 2. This 

figure has been adapted from extensive study of the characteristics of carbon at 

many temperatures and pressures by numerous researchers. A review of these 

studies was produced by Bundy in 19792. 

  

 

Figure 2-The phase diagram (P, T plot) for carbon reproduced from reference3, which was 
adapted from the original source material2,4,5. 

 Diamond is formed in nature by a geological process in the depths of the 

earth’s mantle (~150 to 200 km) where the high temperatures and high pressures  

(~45 to 55 kbar and 1050 to 1200 °C)6 necessary for their production exist 

naturally.  They are brought to the earth’s crust and surface through magma 

flows and volcanic activity, where they are cooled and normally found in 

igneous rock formations. This, along with the thermodynamics and kinetics of 

carbon crystallization, leads to the scarcity of naturally occurring diamond on 

earth. 
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1.2. Crystal structure of diamond 

A brief description of the crystal structure of diamond is necessary for 

further discussion of the morphology of diamond later in this thesis. The 

structure of Diamond, as can be seen in Figure 1 (b), is a system of tetrahedrally 

coordinated (sp3 hybridised bonding) carbons7. Unlike graphite (Figure 1 (a)) in 

which the carbons are bonded in a trigonal planar geometry (sp2 hybridised 

bonding) with the third electron forming a delocalised π-bond that is free to 

move between layers. The tetrahedral covalent bonding of all carbons in the 

diamond structure leads to a very strongly bonded structure, one of the more 

well know material properties of diamond. 

Bulk diamond 

An unreconstructed surface of a diamond can be described as a plane 

through the bulk.   These are designated by three numbers called Miller indices 

(hkl) which define the orientation of the plane cut though the bulk crystal relative 

to a common origin. There are three important planes along which the diamond 

naturally cleaves the (100), (110), and (111). These faces are important in 

understanding the synthesis via chemical vapour deposition, so they are 

presented below in Figure 3.  

 

Figure 3-Main crystallographic faces of diamond (a) (100) (b) (110) (c) (111) 
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Reconstructed (100):(2×1):H surface 

The work in this thesis is concerned entirely with the (100) surface of the 

diamond as this is the surface where most reactions predicted by the standard 

model of CVD diamond growth occurs. The surfaces of most crystals do not have 

the same structure as the bulk crystal. The differentiation between the surface 

and the bulk is called a surface reconstruction; the atoms at the surface form a 

stable terminating structure. This is the case for diamond and each face of the 

diamond has its own unique reconstruction. As all carbons in the diamond bulk 

are tetrahedrally bonded the surface of a slice of the bulk structure will have 

atoms with excess valence electrons. 

The (100) surface of the diamond has what is termed a 2×1 reconstruction. 

This surface reconstruction consists of a dimer bond, which is two surface atoms 

whose bond length is shorter than bulk diamond C–C bond; this is notated as the 

(100):(2×1) surface. Each carbon still has an excess valence electron that bonds 

with a hydrogen atom. The (100):(2×1):H surface of the diamond is shown in 

Figure 4. The dimer bonds form in to a closely spaced regular row on the surface. 

There is a larger trough separating each row from the next. The structure along 

the direction of the trough this is sometimes referred to as the dimer chain. 
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Figure 4-Diamond model looking down on the (100):(2×1):H reconstructed surface 

1.3. Material characteristics and uses 

It is not an exaggeration to say that diamond is one of the most superlative 

materials found in nature from an engineering perspective. In a catalogue of 

material properties commonly sought in science and engineering applications 

diamond is a very often the highest or the lowest (Table 1). Diamond has the 

highest thermal conductivity, the lowest compressibility, extreme mechanical 

hardness and very good wear resistance to name but a few. 

Table 1-A list of some of the outstanding material properties of diamond 

Mechanical hardness ca. 90 GPa 

Bulk Modulus 1.2 GPa 

Compressibility 8.3 × 10-13  Pa-1 

Thermal conductivity  2 × 103 W m-1 K-1 

Speed of sound 17,500 m s-1 

Thermal coefficient of expansion 1 × 10-6 K 

Electrical resistivity 1013 Ω cm 
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The applications of synthetic diamond are numerous. They range from the 

obvious and mundane industrial applications to futuristic biomedical uses8. The 

broad optical transparency, high thermal conductivity, and low expansion make 

diamond an ideal material for high power laser application9 as well as X-ray 

lenses10. Diamond is naturally an outstanding insulator (5.45 eV band gap) and 

when doped it becomes a conducting material11–13. Its thermal and electrical 

properties make diamond a perfect candidate for electronic applications. One of 

the more promising avenues of diamond application are in the biomedical 

field14,15. The bio-inertness of diamond makes it ideal as an implant and in vivo 

uses. There are researchers successfully using flexible diamond microelectrode 

arrays to implant into the retinas of people born blind in order to act as a light 

detector as a route to artificial sight16. Also functionalised nanodiamonds are 

being studied for use in the precision chemotherapeutic treatment of cancer 

patients, precisely targeting the cancer cells with stronger drugs while not 

affecting the healthy tissue17. Diamond truly is a superb material and therefore, 

due to its scarcity, the only route fully utilizing diamonds fantastic potential is 

through synthesis. 

1.4. Synthetic diamond 

Due to its valued status as a superlative engineering material, attempts 

have been made to synthesise diamonds for over 150 years. It was not until the 

phase diagram of Carbon was more fully understood by the 1940’s that it was 

actually possible to successfully create synthetic diamond7,18.  In this section, the 

two most common routes to diamond synthesis are discussed. 

1.4.1. High pressure high temperature diamonds 

(HPHT) 

The first route to producing synthetic diamond logically followed the 

hypothesized geological process, to attempt to create diamond from graphite 

under a large pressure at a high temperature. The first synthetic diamond was 
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produced by this method at the General Electric research laboratories in the late 

1950’s19. Graphite is placed in a hydraulic press so that it is compressible and put 

under more than 10000 atmospheres of pressure while being heated to more than 

2000 K. This process has subsequently been successfully used to produce 

‘industrial diamond’ and is still used today to make diamonds for machining 

tools, the polishing and grinding of optics, and any industrial activity where the 

hardness and durability of diamond are useful. However, one of the major 

drawbacks to this method of making synthetic diamond is that it can only 

produce single crystal diamond of sizes in the order of magnitude from 

nanometres to millimetres.  

The HPHT method of producing sythetic diamond merely mimics nature. 

However, it was improved by the use of catalysts to produce diamond closer to 

the graphite diamond line (Figure 2) and shock wave systhesis which greatly 

impoved reproducability18. While this is useful for many applications, there are a 

number of engineering applications that would benefit from the use of 

polycrystalline diamonds which can be grown by the next method described in 

this chapter. 

1.4.2. Chemical vapour deposition (CVD) of diamond 

A method for synthesising diamond in a way that does not imitate nature 

was discovered in the late 1950’s. Experiments at the Union Carbide company 

with carbon containing gases in sub-atmospheric pressures produced diamond 

growth on an existing diamond substrate20. A review of the history of the 

chemical vapour deposition of diamond is beyond the scope of this thesis but the 

history from Eversole to the present can be found in textbooks7,18,21 and review 

articles1. It is sufficient to say that the chemical vapour deposition of diamond is 

now a mature field but there are still unanswered questions about the theoretical 

mechanisms behind CVD diamond growth22. 

Growth of diamond via CVD starts with the addition of a mixture of H2 and 

a small amount (generally ~ 1-5%) of CH4 into a low pressure vessel(typically in 
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the order of 20 Torr)23. This mixture of gas (sometimes containing partial 

fractions of Ar, N, and other gases) then passes through an activation region 

where the excess energy dissociates the H2 molecules into 2H· and the CH4 into 

various radical carbon containing molecules. This radical ‘soup’ of molecules, 

shown below in Figure 5, then flows and reacts above the substrate surface 

creating more complex hydrocarbons. Some of these hydrocarbons then diffuse 

to the growing substrate where gas-surface reactions contribute to the growing 

diamond surface.   

Figure 5 is a generalised picture of what happens in a non-specific CVD 

reactor for growing diamond. There are numerous types of reactors that have 

been used to produce diamond via CVD. There are two types however which 

dominate the field; these are the hot filament (HF) reactor and the microwave 

plasma enhanced reactor (MWPE) both described below. 

 

Figure 5-Diagram of general CVD reactor showing the main process occurring 
(reproduced from1)   
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Different types of diamond grown via CVD are discussed throughout this 

thesis. CVD reactors can grow single crystal diamond (SCD) as well as 

polycrystalline diamond film with crystal size ranging from mm called 

microcrystalline diamond (MCD), to 100 – 5 nm in size which are called 

nanocrystalline and ultrananocrystalline diamond (NCD & UNCD). 

Hot filament CVD reactor 

The distinguishing property of a hot filament (HF) CVD reactor is in its 

name. The method by which the process gases are activated is a metal wire 

filament, usually made of tungsten or tantalum. This wire is resistively heated to 

around 2000 K which heats the gas in the activation region adding energy to the 

system and initiating the H dissociation described above. The substrate is heated 

by a separate device. The nascent diamond film is generally grown from a silicon 

(Si) or molybdenum (Mo) substrate, which has a crystal structure similar to 

diamond, seeded with diamond nanoparticles as nucleation sites. A diagram 

containing the important parts of an HF CVD reactor is shown in Figure 6. 

The advantages of this method of producing diamond are that it is a 

relatively inexpensive and established technique, however it does have a number 

of undesirable side effects; the first being that the filament degrades over time, 

resulting in a smaller growth period than other methods. Particles from the 

degrading filament can also become incorporated in the growing diamond as 

impurities. This eliminates this method as a way to produce high purity 

diamonds for electronic purposes.  Finally, the filament restricts the types of 

gases that can be used in the process because certain gases can oxidise or 

otherwise corrupt the filament prematurely.      
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Figure 6-Schematic diagram of a hot filament (HF) CVD reactor reproduced from1  

Microwave plasma enhanced CVD reactor 

 The solution to many of the problems presented by HF CVD reactors are 

solved by the microwave plasma enhanced (MWPE) CVD reactor. This type of 

reactor is the state of the art in producing high quality synthetic diamond films 

and single crystals.  A schematic of a MWPE CVD reactor is shown in Figure 7, 

and as was the case for the HF reactor the name of the reactor is indicative of the 

way in which the gases are activated. The activation of an electron plasma gas is 

created by energy from the microwave radiation coupling with the electrons in 

the incoming process gases. The gas then reacts and diffuses between the 

activation area and the growing substrates. The plasma gas typically heats the 

substrate negating a separate heating apparatus. 
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Figure 7-Schematic diagram of a microwave (plasma enhanced) CVD reactor reproduced 
from1 

1.5. Theoretical modelling of CVD diamond 

The research contained in this thesis is concerned with the theoretical 

modelling of various aspects relating to the chemical vapour deposition of 

diamond. In this section a brief overview of the theoretical research in CVD 

diamond growth is presented. 

The CVD process is an inherently multi-scale process. There are macro scale 

properties such as gas flow rates and temperature, mesoscale phenomena such as 

diffusion, and microscopic chemical reactions. In order to accurately model the 

growth of diamond by CVD it is necessary to model processes that occur on 

disparate time and space scales. Thus multiple approaches are required. In this 

section the multi-scale modelling of diamond growth is discussed with a brief 

review of the literature of research that has gone before. 
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1.5.1. Gas phase reactions 

The first aspect of the reactor that requires attention is the complex 

chemistry occurring in the gas phased in the reactor after the process gases have 

been activated (Figure 5). Comprehensive research done in collaboration 

between the diamond group at Bristol University and Moscow State University 

has resulted in a detailed model, described by Mankelevich et al.24,25 and Ma et 

al.26, of the gas phase chemistry in CVD reactors. 

The 2D theoretical model calculates the temperature variation and the mole 

fraction of gas concentration above the surface. This model has been extensively 

validated though the precise monitoring of the plasma during growth 

experiments with optical emission and cavity ring-down spectroscopy.25 A 2D 

model is sufficient as the concentration of gases only vary in the vertical direction 

of the reactor and is symmetrical about the central heat source. This model was 

used to estimate the concentration of gas-phase species above the growing 

diamond surface used in the kinetic Monte Carlo (kMC) model introduced in 

Chapter 2. In Figure 8a below is a plot of the concentration of certain gas-phase 

species as a function of height above the surface from z = 0 to 50 mm. There is a 

large variation of the concentration of all the gases over this range. For the kMC 

the concentration close to the surface needs to be known in order to estimate the 

flux of reactive species on the surface. Figure 8b shows an expanded scale of the 

same data which has been extrapolated to near the surface by the fitting of a 

power law expression in the form of [X]=pzq where [X] is the concentration of the 

gas, z is the height above the surface, and p and q are fitting parameters.  The 

data in Figure 8 is taken from a simulation of a reactor that produces single 

crystal growth, but similar simulations were performed to produce data for the 

following reactors; microcrystalline (MCD), nanocrystalline (NCD), UNCD (HF) 

ultra nanocrystalline (hot filament), and UNCD (MW) ultra nanocrystalline 

(microwave). 
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Figure 8-Concentration of some of the gas-phase species above the diamond surface 
simulated for a MW plasma under single crystal diamond (SCD) growth conditions 
using the 2D model described above. (a) The full data set from z=0 to 50 mm (b) is the 
same data on an expanded scale near the substrate with curves showing an extrapolation 
of the data to near the surface (~z=0 mm). (figure reproduced from 27)     

1.5.2. Gas surface reactions 

In order to understand how the chemical vapour deposition of diamond 

works from a theoretical basis, it is necessary to understand the chemistry of the 

chemical reactions occurring at the surface. This is a molecular and atomistic 

process which requires another level of simulation. As chemical reactions require 

knowledge of the position of the electron it is a quantum process. Therefore 

quantum mechanical electronic structure calculations are required to understand 
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the energetics of a reaction on the diamond surface. These methods are only 

mentioned in passing here, but are discussed further in Chapter 2. Reactions can 

be proposed from the chemical intuition of a research and then the energetics of 

these reactions are determined through calculations and experiments to 

determine their likelihood.  

Many researchers’ mechanisms for growth have been proposed over the 

last three decades23,28,29. Electronic structure calculations were used to investigate 

the energetics of proposed mechanisms to determine the likelihood of these 

being possible reactions leading to carbon incorporation into the growing 

diamond lattice30–35. While the main chemical species responsible for diamond 

growth has not been conclusively determined, it is generally accepted in the CVD 

diamond community that the methyl radical is the most likely candidate. The 

‘standard growth’ mechanism was generally accepted to proceed via the route 

shown by the 1990’s. 

 

Figure 9-Diagram of the accepted ‘standard growth’ model for CVD diamond reproduced 
from1 

More recent work done by our group in Bristol used this method to look at 

the energetics involved in boron doping36 of diamond and more pertinent to this 
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thesis, the incorporation of carbon on (100) diamond surface (see Chapter 3)37. An 

example of one of the potential energy surfaces calculated for this study is shown 

below in Figure 10. This is the insertion of a CH3· into a dimer bond on the (100) 

surface. This is another possible route to carbon inclusion in the diamond 

structure. This study suggests that the primary mechanism by which diamond 

grows under CVD conditions is by the route shown in Figure 10. A methyl is 

inserted into a reconstructed surface dimer by a ring opening and closing 

mechanism. This is slightly different from the ‘standard model’ illustrated above, 

but it still considers the CH3 radical as the main growth species.  

 

Figure 10-Reaction path (energies are in kJ mol-1) for incorporating a +CH3· into a C-C 
dimer bond (figure taken from Cheesman et al37) 

1.5.3. Kinetic Monte Carlo models 

Understanding which reaction mechanisms are possible is useful, but by 

itself not capable of providing information about the macroscopic properties 

observed experimentally, such as growth rates, surface roughness, and crystal 

size. Another type of modelling is needed to bridge the length and timescale 

differences between micro and macroscopic phenomena. The kinetic Monte 
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Carlo (kMC) method does this and will be discussed in more detail in the next 

chapter. However some of the relevant kMC models of diamond growth in the 

literature are discussed in this section.  

Battaile et al.38 were the first to use previous energetics studies to create a 

rate catalogue for a kMC simulation. This model reproduced some growth rates 

for the (111) surface of diamond that compared favourably with experiments39. It 

also produced surfaces with qualitatively compared surface morphologies and 

no quantitative measurement. The work of Battaile et al. had the problem of 

accurate estimation of the rate constants for processes due to the nature of the 

level of electronic structure theory available at the time. The most recent state of 

the art in kMC models for CVD diamond growth was developed and presented 

by   Netto and Frenklach.40 They modelled the (100) surface and used an updated 

kinetic catalogue with better kinetic data and a relatively rigorous estimation of 

the gas concentrations which determine the flux of growth species. Netto and 

Frenklach produced some growth rates that agreed with experiments and 

calculated the surface roughness but did not relate this measure to diamond 

grown via CVD. The model also failed to reproduce the peak and subsequent 

decrease of growth rates of the (100) surface observed experimentally41.     

1.6. Aims and outline of thesis 

Work presented in this thesis has used various theoretical and computational 

techniques to study the chemical vapour deposition of diamond. A particular 

focus of this thesis is on the mechanisms that affect the structure of the surface. 

The kinetics of the etching of carbon from the (100):(2×1):H surface was studied. 

This along with other kinetic information was used in a kinetic Monte Carlo 

model of CVD diamond growth with was developed in the course of this work to 

study macroscopic effects on diamond growth. A brief outline of this thesis 

follows.  

 Chapter 2 – Theoretical methods 
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o In this chapter the main theoretical methods used in the rest of the 

thesis are briefly introduced and discussed.  

 Chapter 3 – 3-dimensional kinetic Monte Carlo model of diamond grown 

by chemical vapour deposition (CVD) 

o The 3-dimensional kinetic Monte Carlo model of CVD diamond 

growth developed for this work is presented. Extensive testing of 

the parameter space of the program is presented as a validation and 

test of the sensitivity of output. 

 Chapter 4 – Surface morphology 

o Three surface restructuring processes are systematically tested to 

determine their effect on the resultant surface morphology of 

diamond simulated using the kMC model outlined in Chapter 3. 

o Three different models for etching and two models for CH3 

adsorption are included in these tests.  

 Chapter 5 – Studies of methyl desorption 

o An analytical reactive potential energy surface (PES) is created 

from accurate electronic structure calculation. This PES is used to 

study the thermal decomposition as well as the non-equilibrium 

dissociation of CH3 from the (100):(2×1):H surface of diamond. 

 Chapter 6 - Conclusions 
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  Chapter 2

Theoretical Background 

2.1. Introduction 

The chemical kinetics of gas-surface and surface reactions lies at the heart of 

understanding the theoretical basis behind the chemical vapour deposition of 

diamond (CVD). These reactions are atomistic by nature, and thus occur on time 

and length scales of an order of Å and ps respectively. The feasibility of these 

reactions can be probed by molecular simulation methods. Free energies can be 

obtained via these methods and within the framework of transition state theory 

(TST) the rate constants of these reactions can be estimated. A certain amount of 

chemical intuition is required to propose reaction mechanisms to test in this 

manner.  However, even then, it is difficult to connect these molecular reactions 

to the macroscopic picture of growth observed experimentally. This is because 

the macroscopic features of growth are a sum of multiple reactions occurring 

many times over a long time span. 

 This final product of CVD diamond growth occurs at time and length 

scales of an order cm and hours respectively.  The disparate time and length 

scales that separate the molecular reactions underpinning growth and the 

resultant grown diamond pose a significant problem when trying to understand 

how the atomistic description of growth affects the macroscopic product. This is 

where the kinetic Monte Carlo method plays an important role. The kMC 

method, described below, allows a simulation to follow the state to state 

trajectory of each reaction when the respective rate constant for each process is 

supplied to the model. This allows the user to follow the micro-structural 
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evolution of diamond given a certain set of atomistic reactions governing the 

system. 

In this chapter only the basic theory behind the methods used in this 

research is discussed. This theory is expanded upon in much more detail in 

numerous textbooks. 1,2 The more technical and specific methods used to obtain 

the different results in this research are presented before the appropriate results 

section in later chapters.  

2.2. Electronic structure theory 

In order to study the reactivity of a set of chemical species it is necessary to 

consider the electrons of the system in question. The electron is a sub-atomic 

particle, a fermion, and classical mechanics fail to describe their interactions. The 

quantum state of the electron is described by a wave function, conventionally 

known as Ψ. The electronic wave function of any given chemical species is 

described by the stationary states predicted by the time independent Schrödinger 

equation  (Equation 1) where �̂� is the Hamiltonian operator and E is the potential 

energy of the state described by Ψ. This equation describes the quantum 

mechanics (QM) of a particle or molecule. 

�̂�𝜓 = 𝐸𝜓       (1) 

There are numerous ways to find the approximate solution to the 

Schrödinger equation for a given system.  It is not the goal of this chapter to 

describe the many different QM electronic structure methods. It is sufficient to 

say that the most important methods used in the current state of the art of 

research can be grouped into two main types; ab initio and density functional 

theory (DFT) methods. The basic theory of methods used for the electronic 

structure calculations performed in this work is discussed here. There is a 

considerable amount of literature devoted to the thorough derivation and 

explanation of these methods and we direct the reader to these for more detail.2 
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2.2.1. Density functional theory (DFT) 

  Density functional theory (DFT) is an extensively used method in electronic 

structure calculations as it is computationally cheaper than high level ab initio 

methods, while still giving accurate relative energies. This method, initially 

developed by Kohn and Sham,3 is theoretically exact for the electronic ground 

state energy which is determined by the electron density.4 The general form of 

the energy as a function of the electron density is shown in Equation 2 where 

Ts[ρ] is the kinetic energy of non-interacting electrons, Ene[ρ] is the electron 

nucleus energy, J[ρ] is the Coulombic electron-electron repulsion energy, and 

Exc[ρ] is the exchange correlation energy (which includes the additional energetic 

contributions not include in the previous terms mentioned). While the exact 

ground state energy is a function of the electron density, the form of this 

functional is as yet unknown so DFT remains an approximate approach.  

𝐸𝐷𝐹𝑇[𝜌] = 𝑇𝑠[𝜌] + 𝐸𝑛𝑒[𝜌] + 𝐽[𝜌] + 𝐸𝑥𝑐[𝜌]        (2) 

All of the energy terms in the equation can be found exactly, except for the 

exchange-correlation functional, Exc[ρ]. Finding an appropriate form for the 

exchange correlation functional is one of the main problems of DFT. The energy 

functional can be approximated by fitting parameters to certain sets of molecules 

based on higher level ab initio data,2 and there are also some known theoretical 

constraints that the exact exchange-correlation functional must respect. 

Depending on how these two approaches are combined, there are many 

approximate functionals available.  A popular hybrid functional that has proved 

accurate for many types of chemistry is the B3LYP functional.5,6 This is a hybrid 

functional, which means that it includes a portion of the Hartree-Fock or “exact” 

expression for the exchange energy within the exchange-correlation functional. 

The B3LYP functional has proved useful in the field of solid state chemistry,7 and 

is used to produce results presented in Chapter 5.   
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2.2.2. Ab initio methods 

Ab initio methods are a class of methods that solve the Schrödinger 

equation by approximating the wave function. One of the most basic of these and 

one of the first to be developed is the Hartree-Fock method. Some of the first ab 

initio calculations performed on a computer for simple molecules were Hartree-

Fock calculations in the 1950’s.8 This method is computationally simple but not 

very accurate for most systems. A classic example is the method’s inability to 

predict the curve for the dissociation of H2 correctly. Some of the work presented 

in Chapter 5 was done using highly accurate wave function methods, called post 

Hartree-Fock methods.9 These methods are used for the accurate treatment of the 

diradical state resulting from the dissociation of CH3 from neopentane. Hartree-

Fock methods overestimate these types of energies. The methods used in this 

work, CASSCF corrected CCSD(T), are considered the ‘gold standard’  of 

quantum chemistry calculations.10   

2.3. Molecular mechanics 

Solving the Schrödinger equation to find the potential energy of a system is 

the most accurate way of modelling molecular interactions and necessary when 

modelling reactions, specifically covalent bond breaking. However, as the size of 

the molecular system increases the cost of the calculation scales considerably. 

Molecular mechanics (MM) uses simple analytical expressions to calculate the 

potential energy of a set of interacting particles.  This expression is evaluated 

much faster, and provides a much more efficient way to calculate the potential. 

Interactions between non-bonded atoms are obtained by modelling the 

particles as spheres with a defined radius and charge both of which are 

determined by either experiment or ab initio quantum calculations. Simple 

Columbic and Lenard-Jones potentials are used here. Additionally, for atoms 

that are chemically bonded there are additional terms based on Hooke’s law 

describing the stretching and bending of these bonds.  The force fields are 
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parameterised functions that are developed for certain types of molecules which 

share similarities in their interactions.  The combination of the functional form of 

these terms and the parameters constitutes the force field for the system being 

considered. These are determined using a combination of data from experiments 

and electronic structure calculations like the sphere radius and charge mentioned 

above. Force fields contain many different functions which are summed for each 

particle to calculate the total potential energy of a system. These functions are 

divided into two classes of interactions these terms are described below. In this 

work the MMFF9411–16,16,17 set of force fields was used for most of the MM work 

as they are well parameterised for hydrocarbon chemistry. 

2.3.1. MMFF94 energy 

The MMFF94 energy is calculated as a sum of bonded and non-bonded 

energies shown in Equation 3. The bonded energies include Ebond, the energy of 

the bond stretch, Eθ  the energy of the bond angle, Estretch-bend , EOOP the out of 

plane bending energy term, and Etorsion the torsional bending energy term. The 

non-bonded terms include the van der Waals and electrostatic interactions.    

𝐸𝑀𝑀𝐹𝐹94 = 𝐸𝑏𝑜𝑛𝑑 + 𝐸𝜃 + 𝐸𝑠𝑡𝑟𝑒𝑡𝑐ℎ−𝑏𝑒𝑛𝑑 + 𝐸𝑂𝑂𝑃 + 𝐸𝑡𝑜𝑟𝑠𝑖𝑜𝑛 + 𝐸𝑣𝑑𝑊 + 𝐸𝑒𝑙𝑒𝑐𝑡𝑟𝑜𝑠𝑡𝑎𝑡𝑖𝑐     (3) 

The bond stretching energy term, Ebond, is based on Hooke’s law. Many MM 

force fields use a quadratic form for this term. While this is computationally 

efficient, it can produce energies that are too large for some elongated bonds. The 

MMFF94 force field uses a quartic form (Equation 4) which produces more 

accurate energies for bond lengths stretched beyond equilibrium.    

𝐸𝑏𝑜𝑛𝑑 = ∑ 𝐾𝑏𝑜𝑛𝑑(𝑟𝑖𝑗 − 𝑟𝑖𝑗
𝑜)2 (1 + 𝑐𝑠(𝑟𝑖𝑗 − 𝑟𝑖𝑗

𝑜) +
7

12
(𝑐𝑠2(𝑟𝑖𝑗 − 𝑟𝑖𝑗

𝑜)
2

))𝑖𝑗  (4) 

The Ebond term is summed over two bonded atoms i and j with a bond length of rij. 

The fitted terms include 𝑟𝑖𝑗
𝑜 which is the reference bond length, Kbond is the force 

constant, and cs a cubic term stretch constant.  

 The angle bending energy term is in a cubic form. The change in energy due 

to a change in angle, θijk, between three atoms i, j, and k is determined by 
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equation 5 where 𝜃𝑖𝑗𝑘
𝑜  is the reference angle, 𝐾𝜃 is the force constant, and cb is the 

cubic bending parameter. 

𝐸𝜃 = ∑ 𝐾𝜃(𝜃𝑖𝑗𝑘 − 𝜃𝑖𝑗𝑘
𝑜 )2

𝑖𝑗𝑘 (1 + 𝑐𝑏(𝜃𝑖𝑗𝑘 − 𝑟𝜃𝑖𝑗𝑘
𝑜 ))       (5) 

There is also a nonlinear stretch-bend (Equation 6) term that includes effects 

from both bond stretching and angle bending. The fitted terms are similar to 

those found in Equations 4 and 5 but unique to the 𝐸𝑠𝑡𝑟𝑒𝑡𝑐ℎ−𝑏𝑒𝑛𝑑 𝑡𝑒𝑟𝑚. 

𝐸𝑠𝑡𝑟𝑒𝑡𝑐ℎ−𝑏𝑒𝑛𝑑 = ∑ (𝐾𝑖𝑗𝑘(𝑟𝑖𝑗 − 𝑟𝑖𝑗
𝑜) + 𝐾𝑘𝑗𝑖(𝑟𝑘𝑗 − 𝑟𝑘𝑗

𝑜 )) (𝜃𝑖𝑗𝑘 − 𝑟𝜃𝑖𝑗𝑘
𝑜 )𝑖𝑗𝑘    (6) 

The next term in the force field is a quadratic term for the out of plane 

bending, EOOP (Equation 7), this term is sometimes known as the improper 

torsional energy term in other force fields.  A schematic diagram of this type of 

bending angle is shown in Figure 11. Here KOOP is the empirical force constant 

and 𝜒𝑖𝑗𝑘;𝑙 is the angle, known as the Wilson angle,18 illustrated in the figure 

below.  

𝐸OOP = ∑ 𝐾𝑂𝑂𝑃(𝜒𝑖𝑗𝑘;𝑙)2
𝑖𝑗𝑘;𝑙           (7) 

  

Figure 11-Schmatic diagram of the improper torsion or out of plane bending angle 

The EOOP term is important when simulating benzene type planar molecule. This 

term helps to preserve planarity in these types of molecules. 

 The final term modelling bonded interactions is the torsional energy term 

(Equation 8). This is the energy associated with the rotation of a molecule about a 

bond. In Figure 12 an ethane molecule is used to demonstrate the torsion angle.  

𝐸𝑡𝑜𝑟𝑠𝑖𝑜𝑛 = ∑
1

2
(𝑉1(1 + cosΦ) + 𝑉2(1 + cos2Φ) + 𝑉3(1 + cos3Φ))𝑖𝑗𝑘𝑙   (8) 
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Figure 12-Ethane molecule used to show the torsion angle Φ about bond j-k 

The angle Φ is the dihedral angle about the bond j-k. The torsional energy term is 

a sum of three periodic repeating functions where Vi is a fitted force constant.  

 The final two terms in the force field describe the non-bonded interactions 

between the particles. The electrostatic interaction between particles is described 

by a modified columbic form (Equation 9). This calculates the potential energy 

due to two point charges qi and qj separated by a distance Rij; ε0 is the dielectric 

constant and δ is a small electrostatic buffering constant (δ=0.05) to prevent 

electrostatic collapse.  

𝐸𝑒𝑙𝑒𝑐𝑡𝑟𝑜𝑠𝑡𝑎𝑡𝑖𝑐 =
332.071𝑞𝑖𝑞𝑗

𝜀0(𝑅𝑖𝑗+𝛿)
      (9) 

 The final term takes into account all of the other non-bonded interactions in 

the form of the van der Waals interaction (Equation 10). The MMFF94 family of 

force fields employs a non-standard form for the van der Waals interaction called 

a ‘buffered-14-7’ form.11   

𝐸𝑣𝑑𝑊 = ∑ 𝜀𝑖𝑗 (
1.07𝑅𝑖𝑗

∗

𝑅𝑖𝑗+0.07𝑅𝑖𝑗
∗ )

7

(
1.12𝑅𝑖𝑗

∗ 7

𝑅𝑖𝑗
7+0.07𝑅𝑖𝑗

∗ 7 − 2)𝑖𝑗    (10) 

𝑅𝑖𝑗
∗  is the minimum-energy separation for unlike pairs i and j, included to 

prevent collapse at short inter-nuclear distances.  The term 𝜀𝑖𝑗 determines the 

well depth and is a function which includes both like and unlike pairs interaction 

terms. 
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2.4. Molecular dynamics 

Molecular dynamics (MD) simulations propagate a system of particles 

interacting on a potential energy surface through space and time. This is done by 

numerically integrating19 Newton’s classical equations of motion (4). In this 

equation, r is the coordinate vector of a particle and V is the potential energy of 

the particle calculated using the MM force field. 

−𝑑𝑉

𝑑𝐫
= 𝑚

𝑑2𝐫

𝑑𝑡2
 

   (4) 

The main advantage of an MD simulation is of course being able to evolve 

the real physical dynamic trajectory of a system and learn about its structural 

evolution.   Another advantage of a time dependent simulation of a very large 

system is the ability to take time averages of the entire system. These average 

properties can then be related to macroscopic observables using statistical 

mechanics (discussed further in Section 1.5). However, before examining the 

different facets of an MD simulation, the technique for solving the equations of 

motion of a large system is discussed. 

2.4.1. Numerical integration 

In a system of many particles, there will be a number of differential 

equations in the form of Equation 4, and they will be coupled to each other 

making an analytical solution impossible. Thus these differential equations must 

be solved numerically by a computer. In order to do this the equations of motion 

are discretised using the finite difference method. 

Verlet algorithm 

The most common algorithm for solving the equations of motion in this 

manner is the Verlet algorithm developed in 1967.19 By expanding the position r 

both forward and backward in time in a Taylor series, equations 5 and 6 are 

obtained. In these equations vi are the velocities at time step i, ai is the set of 
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instantaneous atomic accelerations, and bi is the set of third derivative of the 

positions ri.   

𝐫𝑖+1 = 𝐫𝑖 + 𝑣𝑖Δ𝑡 +
1

2
𝑎𝑖(Δ𝑡)2 +

1

6
𝑏𝑖(Δ𝑡)3 + ⋯          (5) 

𝐫𝑖−1 = 𝐫𝑖 − 𝑣𝑖Δ𝑡 +
1

2
𝑎𝑖(Δ𝑡)2 −

1

6
𝑏𝑖(Δ𝑡)3 + ⋯          (6) 

Adding these two together and solving for ri+1 gives Equation 7: 

𝐫𝑖+1 = (2𝐫𝑖 − 𝐫𝑖−1) + 𝑎𝑖(Δ𝑡)2 + ⋯             (7) 

This is the basis of the Verlet algorithm, which has the obvious problem of 

no information about the velocities of the particles being directly generated from 

the numerical integration. There is a modified form known as the velocity-Verlet 

algorithm which calculates the position (Equation 8, a truncated Equation 5) and 

the velocity explicitly at the same time step (Equation 9).  

𝐫𝑖+1 = 𝐫𝑖 + 𝑣𝑖Δ𝑡 +
1

2
𝑎𝑖(Δ𝑡)2         (8) 

𝑣𝑖+1 = 𝑣𝑖 +
𝑎𝑖+𝑎𝑖+1

2
Δ𝑡            (9) 

 The so called leapfrog modification of the Verlet integration algorithm is 

also used in this work. The velocities are calculated at time i+½ initially using 

Equation 10 and then the positions are calculated at time i+1. The name derives 

from the positions ‘leapfrogging’ over the previously calculated velocities by ½ 

time step. The advantage of this method is that it explicitly calculates velocities, 

but not at the same time as the positions. 

𝑣
𝑖+

1

2

= 𝑣
𝑖−

1

2

+ 𝑎𝑖Δ𝑡           (10) 

𝐫𝑖 = 𝐫𝑖−1 + 𝑣
𝑖−

1

2

Δ𝑡          (11) 

2.4.2. Thermostats 

For MD simulations in the canonical ensemble (see below) there is a need to 

maintain a constant average temperature. This can be achieved in numerous 

ways, but in the work a Langevin thermostat has been used. This means that a 

stochastic force, f’ is added to the sum of forces, f(r), acting on each particle in the 
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manner described by Equation 12, where 𝜁 is the friction coefficient which is a 

small.2,8  

𝑚𝑎 = −𝜁𝑣 + 𝑓(𝑟) + 𝑓′          (12) 

This thermostat method requires fewer computations per time step so long 

thermal equilibrations are more efficient. However, this method does influence 

momentum transfer,8 but this is not a problem in this work as temperature 

dependent simulations are used  to equilibrate a system.    

2.5. Statistical mechanics 

The subject of statistical mechanics is concerned the study of large systems 

of particles where the exact state of each individual particle is unknown. The 

average behaviour of such systems is considered, and as such probability theory 

is used to describe them. These systems are divided into statistical ensembles 

which describe the average behaviour of a collection of systems.20,21  Molecular 

dynamics simulations can reproduce the conditions required by these ensembles. 

Two types of ensembles were used in the work presented in this thesis and are 

shown below. 

2.5.1. Statistical Ensembles 

The canonical ensemble N, V, T 

The canonical ensemble represents all of the possible states of a system 

which is in thermal equilibrium with a heat bath. It is often referred to as an NVT 

ensemble as the following quantities have to remain constant; the number of 

particles (N), the volume of the system (V), and the temperature of the system 

(T). In practice an NVT molecular dynamics simulation requires a thermostat 

maintain the average temperature of the system. The thermostat used in this 

work was discussed in section 2.4.2 above. NVT simulations are used in this 

work to equilibrate a system to a certain temperature be NVE simulations are 

performed. 
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The microcanonical ensemble N, V, E 

 The microcanonical ensemble represents all the possible states of a system 

with a defined constant total energy. It is also known as the NVE ensemble 

which refers to the constant quantities; number of particles in the system (N), the 

volume of the system (V),  and the total amount of energy in the system(E). This 

ensemble is used in this work to study the flow of energy though a system over a 

short time scale. In order to obtain a realistic physical result from these NVE 

simulations they must begin with the right initial conditions. A snapshot of 

positions and velocities from an NVT simulation of the system at the desired 

physical temperature; this simulation much be in thermal equilibrium with the 

temperature bath, which means if should be run for a sufficient period of time. 

2.5.2. Transition state theory (TST) 

The transition state of a system is the highest point on a free energy surface 

between a reactant and a product. The difference in energy from the reactant to 

the product is the Gibbs free energy of activation ΔG‡ (Figure 13). In its most 

basic form, classical transition state theory22 (TST) relates the rate of a reaction to 

the Gibbs free energy of activation by the Eyring equation23 (Equation 5).   
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Figure 13-Diagram of a potential energy surface of a reaction with the activated complex 
at the transition state. 

𝑘 =  
𝑘𝐵𝑇

ℎ
𝑒

−∆𝐺‡

𝑅𝑇⁄       (13) 

In this work the Eyring equation (Equation 13) is used to calculate the rate 

constants of unimolecular reactions for inclusion in the kinetic Monte Carlo 

model. 

2.6. Kinetic Monte Carlo method 

The work presented in this thesis is concerned with simulating the growth 

of synthetic diamond via chemical vapour deposition (CVD, see Chapter 1). The 

individual atomistic processes governing the growth of diamond occur at much 

smaller time scales (ps) than the experimental observables of growth rate and 

surface morphology (hr). The time scales of the individual reactions make them 

amenable to study by molecular dynamics simulations. In fact, growth 

mechanisms previously unknown can be elucidated by molecular dynamics 

simulations on an accurate potential energy surface. There have been studies of 

this type conducted recently by the Bogaerts group in Antwerp in order to 

determine how CxHy gas species react with the surface at step edges.24 
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 In theory it is possible to simulate the growth of diamond on an accurate 

potential surface up to the point where macroscopic properties of diamond are 

observable. In practice this is impossible, as the computational expense would by 

far outstrip the current state of the art. One of the main reasons that this problem 

is computationally intractable with MD methods is due a large contribution from 

rare events in the system and the other is that simulations must have a small 

enough time step to accurately resolve the fastest atomic vibrations. Take for 

instance the 2D potential contour surface presented in Figure 14. A molecule 

bound in the central well will potentially spend a considerable amount of time in 

that well before transition over the reaction barrier into another well. This 

transition could take anywhere between 1fs and 1s of molecular dynamics 

simulation time, the latter being a considerable about of time for one molecule. 

The same thing is happening for every molecule in the simulation obviously 

quickly leading to a problem beyond the reach of current computing technology. 

 

Figure 14-A simple 2d potential energy contour plot used to illustrate a rare event 
system. The red line illustrates the trajectory of a particle confined within a well for a 
certain time before transitioning into an adjacent potential well.  

The kinetic Monte Carlo (kMC) method can evolve the state to state dynamics 

of a complicated system with numerous infrequent events in an accelerated 

manner. In order for the kMC method by itself to accurately predict the 
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dynamics of system modelled a complete catalogue of all possible transitions 

must be known. It is necessary to know the rate constant for each transition. 

Transition state theory allows the determination of the rate constant for a 

unimolecular reaction. By using highly accurate ab initio methods to calculate the 

Gibbs free energy of a likely reaction profile the rate constant for that reaction 

can be estimated using equation 5. The simulated trajectory of the system is 

propagated via a weighted probability of each possible transition occurring.   

In Figure 15  the algorithm for the implementation of the kMC method is 

shown in a flow chart. At each Monte Carlo (MC) time step the rate for each 

process is determined. These are stored in an ordered array of rates, r(i); an 

example of this is shown below in Figure 16a.  A random number u between (0, 

1] is chosen. The rates are summed into an ordered array of sums, S(j), in the 

manner shown by Figure 16Figure 15. The cumulative sum of all of the rates, the 

final number in the array S(j), is then multiplied by the random number u. This 

new number points to the process in array r(i) via Equation 14. 

∑ 𝑟𝑖

𝑖−1

𝑖=1

< 𝑢 ∙ 𝑆(𝑖) ≤ ∑ 𝑟𝑖

𝑘𝑡𝑜𝑡

𝑖=𝑖+1

 

 (14) 

The simulation time is then updated stochastically by incrementing ttotal by Δt 

shown in Equation 15 below. 

Δ𝑡 =
log (𝑢)

𝑆(𝑘𝑡𝑜𝑡)
       (15) 
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Figure 15-The kinetic Monte Carlo algorithm as implemented in this work. 
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Figure 16-The kinetic rate catalogue (a) is a list of all of the rate constants for each 
possible transition in the system and (b) is the order list of sums of these rates. 

 This algorithm is then repeated until the desired length of simulation time 

has been achieved. In practice, this method can reproduce state to state dynamics 

of a system on the order of almost any time (depending on the rates). The 

advantage to using the kMC over molecular dynamics is that every time step is a 

transition, whereas in MD the time scales of the simulation might only allow one 

transition to occur. The disadvantage of the kMC method is that if every possible 

transition in the system is not known, which is the case for all but the simplest of 

systems, then the method is not exact and may not even be useful if the rate 

catalogue is too poorly considered. 
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  Chapter 3

3–dimensional kinetic Monte Carlo 
(kMC) model of diamond grown by 
chemical vapour deposition (CVD)  

In this chapter the development of a novel 3–dimensional kinetic Monte 

Carlo (kMC) computational model for chemical vapour deposition grown (CVD) 

diamond is discussed.  This model is an extension of extensive theoretical work 

on diamond growth previously carried out by the Bristol University diamond 

group.1–7 A fully 3-dimensional kMC program simulating CVD diamond growth 

was written in Fortran 90 (Appendix). After the development of the new model 

extensive sensitivity analysis was carried out to evaluate its strengths and 

weaknesses. These tests are included in the results at the end of this chapter. 

3.1. Chemical model of growth 

The kMC model of growth requires two types of information: first, which 

type of molecular species is being modelled, and secondly what type of chemical 

reactions can occur to each of these species. By knowing all of the elements in 

these two sets of information (a non–trivial exercise) a detailed dynamic, 

macroscopic simulation of diamond growth can be obtained.8 In practice, it is not 

possible to know every potential reaction and product in any complicated 

system. However, if the important pieces of information for a system are known, 

then a relatively accurate kMC simulation can hopefully be achieved, though it is 

possible that the gaps in the microscopic process catalogue can cause certain 

macroscopic affects to be missed.9,10 A kMC model can be an ideal platform to 
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test potential reaction mechanisms for CVD diamond growth as hypothetical 

kinetic mechanisms can be included in the system and the resulting simulation 

can be analysed to determine how the macroscopic growth is affected. Here with 

detailed sensitivity testing to understand its limitations, we aim to generate an 

accurate microscopic model of reaction mechanisms leading to a simulation with 

macroscopic characteristics which can be directly compared to experimental 

growth results.  

The growth of diamond by CVD is essentially a steady state non–

equilibrium process. A complicated set of chemical reactions, discussed in 

Chapter 1, governs this process. These reactions can be divided into two distinct 

sets: gas phase reactions and surface reactions. For the purposes of this 

description, reactions that include gas–surface interactions are considered surface 

reactions. This study is only explicitly concerned with surface reactions, the 

kinetic rates of which are included in the kMC catalogue. However, the kMC 

model does depend on an accurate knowledge of the gas phase reactions. As the 

concentration of different molecules above the surface directly determine the 

rates of reaction for certain surface and adsorption processes. The surface 

reactions are discussed here, but the modelling of the gas phase reactions was 

discussed in Chapter 1. 

3.1.1. Molecular species 

There are six distinct molecular species explicitly included in the model, 

and one which is implicit. Each species represents a molecular ‘group’ that can 

react on the (100) surface of diamond with other species in predefined ways, with 

a known rate.  These species and their approximation in the model are described 

below. 

An inactivated surface species represents a hydrogen terminated carbon on 

the surface. This corresponds to half of a dimer pair on the (2x1):(100):H 

reconstructed diamond surface. An activated surface species corresponds to half 

of a surface dimer with no terminating hydrogen, thus leaving a ‘dangling bond' 
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on the surface. This surface radical is the primary route to growth in the model, 

whereby a CHx is bonded to form an ad species. The CH3 molecule is the most 

common species near the surface and the reaction path, examined by Cheesman 

et al. 6, by which it is inserted into the dimer bond is shown in Figure 10 from the 

introduction chapter is the most probable mechanism contributing to growth. In 

the model the end point of this reaction is represented by the inactivated ad 

species. This species corresponds to an isomerisation between a CH3 molecule 

and a CH2 bridge species between the two dimer carbons. This ad species can 

then be ‘activated’ by a hydrogen abstraction reaction thus becoming an 

activated ad species. This process can occur two more times producing a doubly 

activated ad species, and a triply activated ad species. 

3.1.2. Kinetic processes 

The chemical reactions involved in CVD diamond growth (Table 2) and 

used by the kMC model are described here. A simple and instructive way of 

illustrating these processes is to describe a sample simulation in which all of 

these processes occur.  The initial conditions of this simulation consist of a small 

(N×N) grid of inactivated surface species with other gas and temperature 

settings, not yet described, which are arbitrarily sufficient to produce simulated 

diamond growth. 

 



 

Table 2– Reactions for each process included in model and their associated rate constants. Cd represents a carbon bonded into the 

diamond surface, and * represents a missing C in the lattice. (see below for description of all the processes). 

Process Reaction Rate constant 

a) Surface activation 
(i)  ●H(g) + HCd–CdH  →  ●Cd–CdH + H2(g) 

kactivate 
(ii) HCd–CdH  →  ●Cd–CdH + ●H(g) 

    Ad–species activation 
(iii)  H(g) + CHx(1–3)–Cd–CdH  → ●CHx(0–2)–Cd–CdH + H2(g)  

(iv) CHx(1–3)–Cd–CdH  →  ●CHx(0–2)–Cd–CdH + H(g) 

b) Surface deactivation 
(i)  H2(g) + ●Cd–CdH  →  H(g) + HCd–CdHd 

kdeactivate 
(ii) H●(g) + ●Cd–CdH  →  HCd–CdHd 

    Ad–species  deactivation 
(iii)  H2(g) + ●CHx(0–2)–Cd–CdH  →  H(g) + CHx(1–3)–Cd–CdH  

(iv) H●(g) + ●CHx(0–2)–Cd–CdH → CHx(1–3)–Cd–CdH 

c) CH2/CH3 etch H(g) + ●Cd–CdH  →  *–CdH + CH3(g) ketch 

d) CHx add CHx(g) + ●Cd–CdH  →  ●CHx–Cd–CdH kCHx–add 

e) Migration in 4 directions  H–Cd–CH2–Cd–H ... ●Cd–Cd–H → H–Cd–●Cd ... H–Cd–CH2–Cd–H kmigration 

f) Sticking in 4 directions 
H–Cd–CH2–Cd–H ... H–Cd– CdH2–Cd–H →  

H–Cd–CdH2–Cd–H ... H–Cd–CdH2–Cd–H 
kmigration 

g) β scission H(g) + CH3–CH2–Cd–CdH  →  ●Cd–CdH + CH3(g) kβ 

h) Surface radical migration HCd–CdH…●Cd–CdH  →  HCd–Cd
●...HCd–CdH See text 



Surface activation 

To start this mock example simulation one site, inevitably an inactive 

surface site, is chosen on the grid and the only possible process which can occur 

to it is a surface activation (Table 1(a)). This process is modelled as a combination 

of two surface reactions. The first is an abstraction reaction of surface terminal 

hydrogen by an energetic ●H radical from the gas phase producing an activated 

surface species, or a ‘dangling bond’ on the surface, and an H2 molecule in the 

gas phase (reaction a–i, table 1). The second but much slower process is the 

thermal decomposition of an inactivated surface species into an activated surface 

species and a gas phase ●H radical (reaction a–ii, table 1). The rate constant for 

surface activation is a linear combination of the rate constants for these two 

reactions (Equation 1) multiplied by the concentrations of surface sites that can 

be activated. The rate constants for the individual reactions a–i and a–ii are given 

in equations 2 and 3 below.  

𝑘𝑎𝑐𝑡𝑖𝑣𝑎𝑡𝑒 = (𝑘𝑎−𝑖[𝐻] + 𝑘𝑎−𝑖𝑖)𝑁𝑎      (1) 

          𝑘𝑎−𝑖 = 𝐴𝑎−𝑖√𝑇𝑛𝑠 𝑒𝑥𝑝 (−
𝐸𝑎−𝑖

𝑇𝑠
)     (2) 

          𝐴𝑎−𝑖 = 3.2 ×
10−12

𝑠−1 , 𝐸𝑎−𝑖 = 3430/𝐾      (2a) 

          𝑘𝑎−𝑖𝑖 = 1.66 × 10−11exp (−
49675

𝑇s
)                    (3) 

The pre–exponential factors and energy terms for the rate constants in 

Equations 2,3,5 and 6 are taken from previous experimental kinetic studies of 

hydrogen reactions on the diamond surface.5, 11 Krasnoperov and Kalinovski 

performed extensive experimental and theoretical research on the kinetics of H 

and CH3 reactions on the diamond surface. The experimental errors measured in 

the activation energies (~ 1 kcal mol-1) and exponential prefactors for the rate 

constants of these reactions range from 3% to 8 %. These are very accurate 

experiments and by testing the sensitivity of output for the kMC simulation 

program to variations in the data within the experimental errors given above 

more confidence can be placed in the results of the simulations affected by this 
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process. Since the activation of the surface is critical for the addition of any new 

species it is therefore vital that this process is modelled as accurately as possible.  

Surface deactivation 

Now in this hypothetical simulation, there is one activated surface species. 

If this surface site is chosen to advance the simulation, then there are two 

possible processes which can occur; surface deactivation and CHX addition. 

Surface deactivation is the reverse process of surface activation and in this model 

the rate is determined by the reverse reactions of those described in the previous 

section. The rate constant, kdeactivate (Equation 4) is a linear combination of the rate 

constants (Equations 5 and 6) for reactions b–i and b–ii (Table 1) and the 

concentrations of [H●] and [H2] in the gas phase directly above the surface.  

𝑘𝑑𝑒𝑎𝑐𝑡𝑖𝑣𝑎𝑡𝑒 = (𝑘𝑏−𝑖𝑖[H] + 𝑘𝑏−𝑖[H2])𝑁d     (4) 

           𝑘𝑏−𝑖𝑖 = 9.6 × 10−13√𝑇ns      (5) 

            𝑘𝑏−𝑖 = 3.2 × 10−13√𝑇ns exp (−
7850

𝑇s
)     (6) 

This is the per site rate constant and is multiplied by the total number of possible 

deactivation sites on the reacting surface to get the absolute rate constant per 

time step for surface deactivation. 

The ratio of the concentration of surface radical sites (active) and hydrogen 

terminated surface sites (inactive) is an important steady state quantity during 

CVD diamond growth. This quantity will determine how other microscopic 

chemical processes affect overall macroscopic CVD properties such as growth 

rate and surface morphology. Carbon can only be added to the diamond via an 

activated surface site; therefore a larger concentration of these will lead to a 

higher growth rate. Also, surface radical species (discussed below) can only 

migrate to an adjacent active surface site. Surface ad–species migration is 

believed to significantly affect the surface morphology of CVD diamond. 

The ratio of concentrations of active and inactive surface sites determines 

how many open sites are available for migration and CHX adsorption. Under a 

typical CVD diamond growth regime the ratio of active to inactive surface sites 
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will reach an equilibrium value of approximately 10%. So this measurement is a 

useful benchmark to test. 

CHx(x: 0–3) addition 

The other process which can occur at activated surface site is the 

chemisorption of another carbon containing species onto this site; thus beginning 

the first surface restructuring step towards growth. This is a key process which 

should be a primary determinant of growth rates in simulations of CVD-like 

conditions. The resulting growth rate can then be compared with experimental 

data. Therefore, it is important to correctly estimate this rate of adsorption.  

The rate of chemisorption of a gas species onto the growing surface is a 

function of the flux of the species onto the surface and the percentage of this flux 

that is actually absorbed. The rate constant for CHx adsorption was modelled 

using collision theory and the detailed knowledge of the concentration of the 

gases directly above the surface (Equation 7 and 7a).  The average velocity of a 

molecule just above the surface is 𝑣 (Equation 8), where mCHx is the molecular 

weight of the molecule in question and TNS is the temperature near the surface 

(~0.5 mm above the substrate) The average velocity of the molecule is multiplied 

by the concentration of the gas and two local factors. The s factor is number on 

the interval [0,1] which represents the steric hindrance of the molecule. The g 

factor is a similar number which represents electronic effects. 

𝑘CH𝑥add =
𝑠CH𝑥𝑔CH𝑥

[CH𝑥]𝑣

4𝑁s
      (7) 

𝑘CH𝑥add =
𝑠CH𝑥𝑔CH𝑥

[CH𝑥]𝑣

4𝑁s(𝑁𝑁+1)
      (7a) 

            𝑣 = √
8𝑅𝑇𝑁𝑆

𝜋𝑚CH𝑥

       (7b) 

 While the steric and electronic hindrance of an adsorbing species is 

accounted for in our original model (Equation 7), it is the same for any 

configuration of adsorbing site. This approximation was tolerated in 2–

dimensions as the effects of local structure were deemed to be less important. 
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However, it could have a more profound effect on the surface morphology of a 

3–dimensional simulation. In Figure 17 the different 3-d geometries which can 

affect the rate of adsorption on a surface site with a particular local geometry is 

shown. The arrows denote an absorption reaction.   

 

Figure 17 – A list of 3–dimensional structures affecting adsorption rates not found in the 
2-d model. 

 The effect of local structure near an adsorption site on the rate of adsorption 

was modelled with a scaling factor proportional to one over the number of 

nearest neighbours. This can be seen in the small change to Equation 7 in 

Equation 7a, where NN is the number of nearest neighbours.  This change can be 

physically justified by associating the 1/NN variable with the steric factor sCHx. 

As the number of nearest neighbours increases, the term SCHx/NN decreases 

producing a smaller rate constant making an adsorption event less likely due to 

increased steric hindrance of more neighbours surrounding the adsorbing site. 

Ad–species activation/deactivation 

Now that an ad–species has been chemisorbed onto the surface there are 

more processes which can now occur depending on whether or not this adsorbed 

species is a radical. For the purpose of our simple simulation description we will 

say a CH3 species was adsorbed. This results in an inactive ad–species to which 

only one possible process can occur, activation. Ad–species activation (Table 1–a, 

iii & iv) is governed by reactions similar to those that govern surface species 

activation. Whilst the reactions are subtly different in reality (a surface ad-atom is 
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either a pendant CH3 or a CH2 bridge across a dimer, and a surface site is half of 

a reconstructed dimer), the rate constants used in our model for this reaction are 

the same as those used for surface species activation (Equations 1–3).  The same 

applies to ad–species deactivation, which is governed by very similar reactions 

(Table 1–b, iii & iv) and the rate constants for this reaction are the same as surface 

species deactivation (Equations 4–5).  

Once our hypothetical ad–species has been activated there are a plethora of 

processes that can occur. It can deactivate as described above, or it can undergo 

ad–species activation to become a ‘doubly activated ad–species’; which 

represents a CH● / –C●– (bridge) species. It can then be activated again to a triply 

activated ad–species.  The singly and doubly activated ad–species can both be 

activated and deactivated. The triply activated ad–species can only be 

deactivated and the inactive ad–species can only be activated. As well as this 

competition of activation and deactivation, an activated ad–species can then do 

many other things. It can etch away from the surface, migrate to an adjacent 

radical surface site, or bond to a neighbouring lattice site if available. 

CH2/CH3 etch 

The activated ad–species can then be etched from the surface. The 

mechanism by which this occurs is not well understood and is debated in the 

literature.2,12,13 This uncertainty is the subject of enquiry later in this thesis. 

Whatever is the true mechanism, it is governed in this kMC model by one rate 

constant. In all models of etching this rate constant will almost certainly be 

derived from multiple complicated reaction pathways. The overall reaction 

should be modelled as an activated process. Previous kMC studies of CVD 

diamond growth, including our own, have made attempts to do this. However, 

none of these investigations have accurately captured the macroscopic effects of 

etching on the growing diamond. In order to empirically reproduce 

experimentally observed etching effects the previous 2–dimensional simulations 

of our group at Bristol used an approximation based on scaling the rate of CH3 

adsorption (Equation 3).1,2 
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Original:  𝑘𝑒𝑡𝑐ℎ = 𝑁𝑒𝑡𝑐ℎ × 𝑓𝑘𝐶𝐻𝑥𝑎𝑑𝑑      (8) 

While this does not have an explicit theoretical basis it was used because 

experiments at Bristol 14 show that the rate of carbon mass loss of CVD diamond 

in a reactor with no CH4 input (just H2) is proportional to the carbon addition 

observed under growth conditions with CH4 input.  

The first difference examined in 3–d was the dependence of the rate of 

etching on the local structure. An activated ad–species can etch with a rate based 

on the Eyring Equation (Equation 9a). However, governed by this rate the 

molecule will etch with the same rate regardless of local structure. This is not a 

suitable approximation of the actual dependence on chemical bonding, 

electronic, and steric effects that will affect the etching of the ad–species. A 

snapshot of each different structure for which the rate is treated differently is 

shown in Figure 18 below. The local geometry around the molecule which 

represents an activated surface species should cause the rate of etching to vary. 

In this model, an exponential dependence on the number of nearest neighbours 

(NN,Equation 11) was chosen as a suitable model. Previously a linear 

dependence on the nearest neighbour was used (Equation 10).This puts an equal 

weight on the influence of each such neighbour.    

Eyring:  𝑘𝑒𝑡𝑐ℎ = 𝑁𝑒𝑡𝑐ℎ
𝑘𝐵𝑇𝑠

ℎ
𝑒𝑥𝑝 (

−𝛥𝐺𝑒𝑡𝑐ℎ
‡

𝑅𝑇𝑠
)     (9) 

 Linear:  𝑘𝑒𝑡𝑐ℎ =
𝑁𝑒𝑡𝑐ℎ

(𝑁𝑁+1)

𝑘𝐵𝑇𝑠

ℎ
𝑒𝑥𝑝 (−

𝛥𝐺𝑒𝑡𝑐ℎ
‡

𝑅𝑇𝑠
)     (10) 

 Exponential: 𝑘𝑒𝑡𝑐ℎ = 𝑁𝑒𝑡𝑐ℎ
𝑘𝐵𝑇𝑠

ℎ
𝑒𝑥𝑝 (−

𝛥𝐺𝑒𝑡𝑐ℎ
‡ +𝑁𝑁𝐸𝑤𝑎𝑙𝑙

𝑅𝑇𝑠
)   (11) 
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Figure 18 – 3–dimensional structures affecting etching rates. This is a visualisation of a 
representative (100) diamond surface in the kMC simulation program. The 
implementation of the program is discussed later in this chapter 

Surface ad–species migration 

Another process which can occur to the activated ad–species is that it can 

migrate to a neighbouring activated site. The migration of chemisorbed ad–

species has been proposed by several researchers. 13,15,16 Unlike the migration of a 

physisorbed ad–species on epitaxially grown metals, the migration of a 

chemisorbed ad–species on a reconstructed diamond surface involves a relatively 

complicated reaction pathway. While not directly observed it has been suggested 

that this mechanism has a large influence on the surface morphology of the 

growing diamond. The reaction pathway has been studied by previous 

authors,6,13,15,16 and in this model an Arrhenius equation (Equation 10) is used for 

the rate constant and the pre–exponential factor activation energy are taken from 

Richley et al.  

 𝑘migration = 𝑁mig𝐴migexp (−𝐸a,mig/𝑅𝑇s)    (10) 

The rate constant for surface migration is large, but the actual rate of 

migration is limited by the concentration of surface radical sites. In this model, an 

activated ad–species can only migrate to a neighbouring site if it is an activated 

surface site. For most cases, the limiting factor in the migration of a surface ad–
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species is whether a neighbouring activated site is available to migrate to. This is 

due to the fact that surface radical migration (see two sections below) is as fast a 

process as ad–species migration. So even when a migration event occurs, the 

neighbouring active surface site left behind will more likely than not migrate 

away leaving the ad–species with nowhere to migrate. 

Free species bonding to the lattice 

 If an activated surface species migrates or lands next to another species on 

the same level, it does not automatically bond. It has the ability to either bond 

with the lattice or migrate away if an active surface site is adjacent. Both of these 

occur with the rate constant kmigration.  

β–scission 

The β-scission reaction is the process (Figure 19)17 that quickly removes two 

carbon chains of sp2 hybridised carbon from the diamond surface. In this model 

the β-scission can occur when there are two blocks, one on top of the other, with 

no neigbours on either side and the top block is activated. This process occurs 

with a rate governed by the Eyring expression in Equation 12. 

 

Figure 19-The β-Scission reaction removes sp2 hybridised carbon from the surface. 

𝑘β = 𝑁β
𝑘B𝑇s

ℎ
exp (−1.8 × 105/𝑅𝑇s)    (12) 

The Gibbs free energy of activation was estimated from unpublished electronic 

structure calculations of the reactions in Figure 19 done by Professor Jeremy Harvey. 
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Surface radical migration 

There is one important kinetic process not discussed in our hypothetical 

simulation above that was occurring in the background but was not discussed.  

The migration of a radical surface site (Table 1h) is a very fast processes 

compared to others. The kinetic Monte Carlo method is inefficient when any one 

rate in the catalogue is disproportionately faster than any of the others.  If surface 

radical migration is modelled explicitly then this process would dominate and 

the simulations would be too expensive to produce useful information 

concerning diamond growth. 

In our model this problem is dealt with in a manner similar to the kinetic 

folding / equilibrium method used by other kMC models.18,19 Only 

approximately 10% of the surface is covered with a radical site. The rate for 

surface radical migration is so fast compared to any other process that by the 

time another process does occurs the surface radical sites are essentially in a new 

thermal distribution. We can therefore ‘fold’ this process into the others so that it 

isn’t explicitly in the model, but the necessary chemistry is preserved. This is 

achieved in the following manner.  The surface radical migration process was 

turned off. However, after each process the state of the entire surface is changed 

such that the percentage of radical to non–radical sites remains the same, but 

their position on the grid is according to a random Gaussian distribution. 

3.2. Computer program 

The following section is about the practical implementation of the kMC 

model in a computer simulation written in Fortran 90. A copy of the program 

with all necessary input parameters is provided in the Appendix. 

3.2.1. Lattice approximation  

Any kMC model is going to have many approximations as a consequence of 

speed, efficiency, custom, and accuracy. An important step in developing a 
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surface growth model is the choice of whether to represent the lattice explicitly or 

use off-lattice models.20 This model uses the lattice approximation. The diamond 

(100) surface is represented as an N×N grid where each lattice site represents a 

potential reaction site. All of the reactions listed in Table 2 are for the (100) 

surface. The 2x1:H reconstruction of the surface is not explicit in the lattice 

approximation, but implicitly accounted for via the reaction processes. While not 

as physically realistic as off lattice models it offers a reasonable compromise 

between computational expense and physical accuracy. 

Another approximation used in these simulations is that that surface and 

the bulk diamond are both represented by a simple cubic geometry. This is 

naturally exactly the same as the unreconstructed (100) surface. The cubic 

structure is only naturally occurring in the bulk of the diamond. That is, if the 

diamond is sliced along the (100) face then a simple cubic structure is observed. 

However, once exposed to the atmosphere surface forms a 2x1:H reconstruction 

(Chapter 1). As mentioned above, this reconstruction is not explicit in this model. 

However, the reactions in a CVD atmosphere remove the terminal H atoms and 

the radical chemistry driving diamond growth reorganize the surface which 

effectively adds carbon to the reconstructed surface such that a new layer of (100) 

bulk is produced with a new surface. The simple cubic crystal structure only 

represents the one layer of the surface as the diamond cubic lattice consists of 

three repeating nonaligned cubic planes. This possibly has some implications in 

predicting the macroscopic properties of CVD grown diamond, but it is used in 

this study as an acceptable approximation. The implications and the limitations 

of this approximation are discussed more in the summary and further work 

chapter at the end of this thesis.   

3.2.2. Boundary conditions 

As this model involves the migration of species on a finite grid it was 

necessary to implement periodic boundary conditions. This was a relatively 

simple procedure that will be demonstrated by an n×n grid is shown in Figure 

20. Looking at one square on the figure migration can only occur in four 
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directions ‘up’, ‘down’, ‘left’, and ‘right’ as viewed from above. If the simulation 

is at point (Xn, Yn) on the grid and it were to migrate up the species in question 

would migrate to (Xn, Y0), and if it were to migrate right it would end up on 

point (X0, Yn). If the simulation starts at point (X0, Y0) and migrate down the it 

will end up at (X0, Yn) and if it migrates left it will be at (Xn, Y0). 

 

Figure 20-An n×n grid of squares to demonstrate periodic boundary conditions 

3.2.3. Initial conditions 

The rate constants in the kinetic model are determined by three main 

properties which are derived from other sources. These are the concentration of 

gas species above the surface, the energetics in the rate constant (normally the 

activation energy Ea and a pre–exponential factor A), and the temperature of the 

gas near the surface and that of the surface itself. These are the initial conditions 

in the kMC model that determine the resulting simulation of growth. There are 

two input files that can be changed to perform various experiments/simulations. 

The file input.txt contains the important model parameters that are changed 

according to which CVD conditions are being simulated. Tns is the temperature 

of the gas near the surface which affects the pre–exponential factors of some of 

the rate constants. This is usually hotter than the temperature of the substrate, Ts. 

The concentrations of gases above the surface are taken from the data calculated 

from the Bristol-Moscow model discussed in the introduction. These are the 

concentrations of H, H2, CH3, CH2, CH, and C. Included with the concentration 

of each species are two parameters describing the hindrance of the molecule due 
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to steric, s, and electronic effects, g. These three parameters are used to estimate 

the adsorption rate of each species shown in Equations 7, 7a, and 7b x previously. 

Finally, there is the total time of the simulation and the N×N size of the surface to 

be simulated. There are other housekeeping and testing parameters which are 

not a part of the physical model, but useful none the less. A sample input.txt can 

be found in Appendix A. 

The file energy.txt contains the pre–exponential factor, A, and the energy of 

activation, Ea, for the rate constants used in the reactions listed in Table 2.  These 

are not dependent on the type of CVD diamond growth conditions. They are 

included in a separate file for model validation and sensitivity testing. This topic 

will be addressed in the 2nd half of this chapter. As with input.txt, a sample file of 

energy.txt is provided in appendix A as well.  

3.2.4. Output 

In this section the output of the kMC program is discussed. Various 

features of this output will be presented in subsequent results chapters for 

individual simulations of different growth conditions. The overall form of these 

metrics is presented here as a reference to frame the presentation of subsequent 

results from simulations. 

General dynamic output 

 There are three main output classes that can be monitored for the whole 

simulation time; growth rate, surface roughness, and the frequency that each 

process occurs. Each of these three categories gives an insight into the simulated 

diamond and can be used as a cross check to the program all without the need 

for the more costly post processing visualisation process. This means that many 

simulations can be run and bulk results from these experiments can be compiled 

together into a bigger picture.  

 While discussing the output of the program below, all of the results come 

from one simulation. A set of initial conditions was used similar to that found 
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experimentally in a microcrystalline diamond (MCD) growth environment. This 

type of diamond has an average crystallite size on the micrometres. The input 

parameters are given in Table 3 below: 

Table 3–Parameter set for microcrystalline (MCD) diamond growth simulation 

Ts /K 1173 

Tns /K 1267 

[H]   / cm–3 1.85×1014 

[H2]  / cm–3 1.52×1017 

[CH3]  / cm–3 1.46×1013 

[CH2]   / cm–3 3.66×108 

[CH]  / cm–3 2.74×108 

[C]  / cm–3 3.37×109 

Grid size  / block2 25×25 

Total time / s 150 

Growth Rate 

 The measurement of the growth rate as a function of time over the course of 

the simulation is recorded throughout. It is calculated as a function of average 

height over the total simulation time (Equation 13) where the average height of 

the simulation surface, ℎ̅, is scaled by the separation distance between two layers 

of the (100) diamond surface, 𝐶 − 𝐶(100) = 0.892Å.  

𝐶−𝐶(100)ℎ̅

𝑡𝑡𝑜𝑡𝑎𝑙
       (13) 

The inclusion of this measure gives the user a fast check that the simulation 

is statistically equilibrated in the sense that the value of the rates reaches a steady 

state average with little noise. The growth rate should be relatively constant 

throughout the simulation. There is a period of instability at the beginning before 

the kMC simulation has reached the characteristic time at which each process is 

in a steady state. This initial instability with subsequent stability of the growth 

rate can be seen in Figure 21 below. This shows that the growth rate reaches a 

steady state value rapidly as the simulation becomes statistically equilibrated.  
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Figure 21–Surface growth verses simulation time for a 150s of a simulation of MCD 

diamond growth on a 25x25 grid. 

 This figure shows the growth rate changing rapidly in the beginning as the 

system ‘equilibrates’. However it quickly reaches a certain value with a lessening 

amount of statistical noise after about 30s of simulation time. The noise is almost 

completely gone after 60s. The average growth rate taken from 40s on is 0.182729 

µm h–1 with a standard deviation of 0.000424 µm h–1. The small amount of 

standard deviation from the mean for 110s of simulation shows that the 

simulation is stable and can produce a value for the growth rate. This value will 

be used with other output parameters in subsequent chapters to test the model 

against the experimental results of others.  

Surface roughness 

The next experimental measurement that the kMC results can be compared 

with is surface roughness. The surface roughness is an average of the height 

profile usually taken by AFM measurement. This gives an approximate gauge of 

quality and type of surface morphology for the diamond measured. In these 

kMC simulations the root mean square deviation (Equation 14) is used as an 
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analogue for surface roughness and is equivalent to monolayer coverage. The 

closer this value is to zero the more likely it is that the surface has a smooth 

mono layer. 

√
∑ (ℎ𝑖−ℎ̅)2𝑛

𝑖=1

𝑛
      (14) 

 This roughness can be measured as a function of time, but it is customary 

and more informative to plot it as a function of the average surface height 

measured in layers as the simulation proceeds. An example from the standard 

calculation from this section is show in Figure 22. From this it is noticeable that 

the roughness stays below one over the course of the simulation. This shows that 

the simulated diamond is growing in a layer by layer fashion, i.e. the ‘holes’ in 

the previous layer are filled before another layer is nucleated. If it were perfect 

layer by layer growth the function would be sinusoidal from 0 to 1 at every 

integer height. The surface roughness measurement is used throughout this 

study as a first analysis of the surface morphology of different CVD growth 

regimes.  
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Figure 22–Surface roughness (RMSD of the surface height) as a function of the average 
surface height in ML (monolayers) for the standard conditions from Table 3. 

 Reaction rates 

 The last numerical output of the program to be discussed is the rate of each 

reaction (Table 2) during a simulation. At each Monte Carlo step a process is 

executed, and this is recorded as a frequency. This, with the Monte Carlo time 

step, can provide a way to calculate the rate of each overall reaction at each time 

step. These rates should essentially be in a steady state during the CVD process. 

This along with frequency counting can provide a ‘reality’ check when 

developing the code, such as adding a new reaction process. This facility is also 

useful in testing which processes are dominant / important and which are not 

for various simulated growth conditions. In Table 4 below, the average rates of 

reaction are listed for the same simulation used in the previous two sub sections.    
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Table 4– A list of the average rates for each process during a kMC simulation with MCD 
conditions for 150s. The rates are approximately in a steady state after the kMC 
simulation has thermalized, so an average of each taken after this time is the rate of each 
reaction for the simulation.  

  Reaction Rate / s–1 

CH3 adsorption 3.90×102 ± 7.4×10–1 

CH3/CH2 etching 3.25×101 ± 4.4×10–1 

Surface activation 6.23×105 ± 6.8×101 

Surface deactivation 6.23×105 ± 6.8×101 

Ad–species activation 1.07×103 ± 1.1×101 

Ad–species deactivation 7.72×102 ± 1.0×101 

Migration 1.38×103 ± 1.8×101 

Beta–scission 1.01×100 ± 5.5×10–2 

Double activation 1.04×102 ± 1.7×100 

Double deactivation 1.00×102 ± 1.8×100 

Triple activation 1.31×101 ± 2.0×10–1 

Triple deactivation 1.30×101 ± 2.0×10–1 

CH2 adsorption 2.24×10–2 ± 5.7×10–3 

CH adsorption 2.66×10–2 ± 7.5×10–3 

C adsorption 5.41×10–1 ± 5.0×10–2 

 It is obvious from Table 4 that surface activation and deactivation dominate 

the simulation of MCD diamond, as is generally true of all growth conditions, by 

two orders of magnitude relative to the next fastest process.  

Visualisation 

While many important measures were quantitatively taken from the 

simulation, it was helpful for qualitative understanding to visualise surface. The 

visualisation routine was a post processing python script that counted all of the 

surface restructuring kMC steps (adsorption, etching, migration, and beta-

scission) and output an xyz trajectory of these steps. The open source 

visualisation software OVITO 21 was used to produce movies and render still 

pictures like the ones in Figure 23.  
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Figure 23–four views of a 25x25 MCD simulations, a) x–y plane b) x–z plane c) y–z 
plane d) 3–dimensional view 

3.3. Sensitivity testing 

In this section the testing of the kMC program for the model described 

above is discussed. This new program was tested in two ways. The first is also a 

direct comparison with the older 1–dimensional model developed previously,1,2 

and the second was a sensitivity test.  The first test was necessary, as the 

implementation of the kMC algorithm was completely different new from the 

old. It was essential to start from the same place as the previously published 

work in order to have confidence in the new program. This would then allow for 

a greater confidence when adding new processes and species to the model. 

After this, a detailed systematic sensitivity analysis of the input parameters 

for the kMC program was carried out. Unlike the previous program, the 

structure of the new program allowed this to be done in a computationally 

feasible time frame. The parameters for the rate constants and gas concentrations 

discussed in sections 3.1.2 and Chapter 1 were obtained from experiments and 

theoretical calculations each with its own set of uncertainties. These can then 
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compound in unforeseen ways when combined together in the kMC model. The 

purpose of this analysis was to judge the sensitivity of output for the kMC 

program to changes in the input parameters. This was then compared with the 

known uncertainties in the parameters in order to estimate the effect that these 

would have on the output of our simulations. This analysis also allowed us to 

study how the individual kinetic processes (Table 2) interact with each other in 

the dynamics of the diamond growth system. That is to say, we know how these 

individual processes behave in isolation but not when coupled with competing 

processes. 

In the following set of calculations the initial parameters simulating both 

MCD and NCD (micro and nanocrystalline diamond) growth regime (Table 3 

and Table 5) were used. Whilst MCD diamond growth represents the most well-

known and one of the best possible CVD diamond growth conditions, it requires 

a significant amount of computational resources in our model. In this section a 

large number of statistically equilibrated calculations were run, each with one 

minor variation. This systematic exploration of the parameter space of the kMC 

model was computationally expensive. Simulations carried with the NCD 

growth conditions from Table 5 below are statistically equilibrated much quicker 

than MCD growth and the simulated chemistry is such that it still represents 

CVD diamond growth well. Therefore MCD and NCD growth conditions were 

used to explore the parameter space of the model more efficiently. 

Table 5 - Input parameters for nanocrystilline diamond (NCD) growth conditions.   

Ts /K 1173 

Tns /K 1267 

[H]   / cm–3 1.52×1014 

[H2]  / cm–3 1.51×1017 

[CH3]  / cm–3 5.68×1013 

[CH2]   / cm–3 8.12×1010 

[CH]  / cm–3 6.53×108 

[C]  / cm–3 5.45×109 
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3.3.1. Surface size 

The largest influence on CPU time for a simulation is the size of the N×N 

grid which represents the surface. The total simulation time increases with N by 

approximately O(N4)(Table 6). The total number of Monte Carlo simulation steps 

will scale as N2 for a given total simulated time. However, choosing which 

process to carry out at each simulation step will take longer as the surface grows. 

For an N×N surface the number of possible processes that could occur will scale 

approximately as N2. Which process to carry out is determined at each 

simulation step, therefore a total scaling of O(N4) agrees with this justification.  

The extent to which the stability of the results, reaching a steady state, depends 

on the size of the surface grid is shown here. Growth conditions known to 

produce microcrystalline (MCD) diamond experimentally were used as the 

simulation time was shorter than single crystal diamond yet produced results 

which still provided an accurate model of growth. The initial conditions used for 

these tests are shown in Table 3 above. 

Table 6 - Total wall time for each Ni×Ni grid simulation where Ni = 5i for i = 1-10. 

N N×N Total wall time / s 

5 2 21 

10 100 228 

15 225 1012 

20 400 2755 

25 625 6642 

30 900 14087 

35 1225 25480 

40 1600 42973 

45 2025 67658 

50 2500 103996 
Ten simulations, each with a total simulated time of 50 s, were performed; 

the only change for each being the grid size, an Ni×Ni grid where Ni = 5i for i = 1-

10.  It was expected that the quantities measured in the simulations would 

approach a converged value. The purpose of these tests was to give an insight 

into which size grid would be the most efficient for running other, longer, 
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experiments, that is, which grid size will give a reasonable accuracy whilst not 

being too computationally expensive.  

As expected, the noise in the dynamic outputs was large at very small grid 

sizes. This noise decreases dramatically as the grid size is increased. As well as 

this, the measured properties (growth rate, surface roughness, and process rates) 

approach a steady state value much more quickly as the grid size increases. In 

Figure 24 below the dynamic output of growth rate over a 50 s simulations is 

shown for three simulations (for clarity in the picture) run with a 10×10, 25×25, 

and a 50×50 grid.  

  

Figure 24-Growth rate verses total simulated time for simulations with a 10×10, 25×25, 
and 50×50 grid using MCD growth parameters 

The results from the 10×10 grid simulation show that the growth rate does 

not reach a steady state value until around 40 s simulation time, and there are 

still small fluctuations in the value. The growth rates from the other two 
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simulations shown in the figure above approach a steady state much sooner and 

both become more stable as well. The results improve as the grid size increases.  

The results of the RMSD surface roughness for the same three simulations 

are shown below in Figure 25. The surface roughness for MCD growth is 

expected to approach a steady state value. The statistical noise around this value 

will be much stronger than that in the growth rate due to the effects from local 

structure in single calculations such as mound sharpening and flattening around 

a long term average. The same patterns seen in Figure 24 are exhibited below in 

the surface roughness results. The 10×10 grid simulations show a large variation 

in roughness. A quasi-layer-by-layer pattern of growth can clearly be seen, but 

the value is too noisy to be trusted as the variation in the roughness after the 

simulation reaches a steady state is too large. The 25×25 grid shows fewer 

fluctuations than the smaller grid, but local structure effects can be seen around 

an average height of 40 ML and 120 ML. These local structure affect are averaged 

out as the grid becomes larger. The 50×50 grid simulation yields a much more 

continuous curve reaching a limiting value of approximately 1 ML. 
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Figure 25-Surface roughness verses the averave simulated height of the surface for 
simulations with a 10×10, 25×25, and 50×50 grid using MCD growth parameters 

 While it is apparent from the results presented above that the 50×50 grid 

produced the most converged results, the simulation took approximately 28 hrs 

of wall time to complete (Table 6). This is not computationally too expensive by 

itself, but when exploring vast portions of the parameter space of the program 

(100s of simulations) this becomes costly. This is especially true when the 

simulations on a 25×25 produce adequate results with only a wall time of 1.8 hrs. 

Thus the 25x25 grid was chosen to produce quality results for the exploration of 

parameter space while doing so in a reasonable time frame. 

3.3.2. Simulated time 

After considering surface size, the next logical step was to look at the 

temporal convergence of the kMC program. The same gas parameters for MCD 
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(Table 3) growth were used in long simulation with a total simulated time of 150 

s on a 25x25 grid. 

Results for the growth rate versus simulated time for this simulation can be 

found below in Figure 26. There are two sets of data representing the growth rate 

on this figure. The continuous curve in green is simply the growth rate as a 

function of time from 0 to 150 s. The growth rate reaches a steady state value of 

0.88 µm hr-1 by approximately 80 s. However, the measure reaches steady state 

(to one significant figure) before 10 s of simulated time.  The second measure is 

an average of the second half of the growth rate function taken from the time 

where the point is shown on the graph. So, for example, the point at 80 s which is 

0.8839±0.0012 µm hr-1 is an average of the growth rate from 40 s to 80 s. The 

reasoning behind taking the average of the later half is that the variation in the 

growth rate decreases as simulated time increases and averaging over the entire 

time period at each point chosen would include too much noise from early in the 

simulation. The temporal convergence is most obvious in this curve (the blue 

squares in Figure 26). The first average at 10 s is 0.871±0.002 µm hr-1 value. The 

average then approaches a converged value of 0.884 by 80 s with a decreasing 

standard deviation up to the final average taken at 150 s. 
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Figure 26–Growth rate as a function of time for a 150 s simulation with MCD growth 
conditions and a 25x25 grid.  

 The results for the surface roughness over the simulated time of 150 s are 

shown below in Figure 27. The curve is jagged and peaked, but it does tend to 

centre on an average value of 1.086 / ML which is similar to the larger grid sizes 

discussed in the previous section. These peaks are due to local structure affects 

that are averaged out on larger grid. They represent a multi-layered ‘nucleation’ 

site that offers more places to which a migrating or adsorbing carbon can add 

than on a smoother surface. These nucleation points are eventually smoothed out 

in this growth regime (MCD) resulting in a decrease in surface roughness, hence 

the troughs in Figure 27.  
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Figure 27- Root-mean-square devation (RMSD) surface roughness as a function of 
simulated time and average surface height for a 150 s simulation under MCD growth 
conditionsand a 25x25 grid. 

For a simulation with a 25x25 grid the temporal convergence to a steady 

state as shown in the data presented above is relatively quick. A value of 0.861 

µm hr-1 is found at a simulated time of 1.0 s, which is within 3% of the long-time 

average taken at 150 (0.885 µm hr-1). However, at 1.0 s the fluctuations around 

the mean are 20 times as large as those at 50 s (0.0021 and 0.00043 µm hr-1 

respectively). The temporal convergence of the surface roughness is harder to 

define. The roughness increases from 0 to 50 s and then starts to hover around 

and 1.2 ML. It then oscillates for the rest of the simulation as shown above. The 

roughness first approaches the final average value for the first time, then this 

would be at around 50 s simulated time. As can be seen from Figure 26, the 

growth rate is already well on its way to convergence.  So it appears that it takes 
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longer for the surface roughness to reach a meaningful steady state value in the 

simulation than the growth rates.  

3.3.3. Gas concentrations 

The concentration of H, H2, and CH3 was varied between 1% and 199% of 

the standard concentrations for NCD growth conditions given in Table 2 Table 5 

shown above. In this study it is assumed that the concentrations obtained for the 

accurate modelling of gas phase chemistry done previously by our group are 

accurate. However, the data taken as the concentrations near the surface are an 

extrapolation of a model, and therefore could be subject to unforeseen 

inaccuracies. Therefore it is important to know how these concentrations of gases 

at the surface affect the outcome of the kMC simulation.  The sensitivity of 

output to these tests will enable us to gauge the validity of simulation output 

when compared with experimental data later. By having confidence in the 

accuracy of the input parameters we have a better assurance that our kinetic 

model is accurate if our simulation results reproduce experimental results 

[H] 

 The concentration of H⋅ above the surface during CVD diamond growth is 

important for many reasons. These were discussed in Chapter 1, so it is sufficient 

to say here that the excess energy from these radicals drive the majority of the 

chemistry involved in CVD diamond growth. It will be shown here that the 

sensitivity of the kMC model to changes in [H] is significant.  

 In Figure 28, the growth rates produced from the variation of the 

concentration of H above the surface from 1.52×1012 cm-3 to 3.02×1014 cm-3 (1% to 

199% of the value of [H] given in Table 5. The growth rate increases quickly at 

first and then approaches a limiting value smoothly.  This is due to the increase 

in active sites as [H] increases. More H⋅ near the surface leads to more abstraction 

reactions of H bonded to surface species. This means that the ratio of active to 

non-active surface sites increases enabling a corresponding increase in carbon 

adsorption. However, this increase in growth rate begins to slow as the 
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concentration of active surface sites increases. This becomes the limiting factor in 

increasing growth rates. 

 

Figure 28–Growth rate over the varied fraction of the standard [H] in NCD growth 
conditions. 

 As the surface is covered with more ad-species these also become active 

more frequently as [H⋅] increases. As a larger proportion of active surface sites 

become available the chance of an active ad-species having an active surface site 

as a neighbour is greatly increased, thus increasing the likelihood of said species 

migrating. It was found that the rate of active ad-species migration increased 

linearly with increase in [H⋅]. This suggests that once the surface is saturated 

with active surface sites and ad-species the rate of migration continues to 

increase with [H⋅]. The increase in ad-species activation does not lead to a 

noticeable increase in the rate of etching. It only increases in line with the growth 

rate as the rate of migration is very large compare to that of etching.  

The increase in the rate of migration coupled with no increase in etching 

could have an effect on the surface morphology of the simulated diamond. An 

average for each simulation of the last 80% of the RMSD surface roughness 

measure was taken. No systematic trend was seen in these values and it appears 
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that the [H] concentration does not greatly affect the surface morphology in our 

model. The average and one standard deviation of these subsequent 21 values 

was 2.385 ± 0.358 / ML 

[H2] 

 The concentration of H2 above the surface is much higher than that of H●; 

approximately 103 times larger in standard NCD growth conditions as shown in 

Table 5 . Although it is much less reactive than H⋅ a proportionally larger change 

in concentration should affect the outputs.  The standard concentration for H2 

from Table 5 is 1.51×1017 cm-3. As with the set of simulations for [H] above the 

concentration of this gas was varied from 1% to 199% of the standard 

concentrations; this was a range from 1.51×1015 cm-3 to 3.00×1017 cm-3.  

 The results for the growth rate over this variation are shown below in 

Figure 29. Here an almost linear decrease is observed. Over the entire range the 

gas concentration variation the absolute magnitude of the change is growth rate 

was only 1.6 µm hr-1. This is a smaller change in growth rates than for [H] over 

the same magnitude of gas variation.  

 

Figure 29-Growth rate over the varied fraction of the standard [H2] in NCD growth 
conditions. 
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The decrease in growth rate is caused by an increase in the rate of the surface site 

deactivation reaction relative to surface activation. This occurs due to the 

dependence of kdeactivate on [H2], while kactivate lacks this dependency. 

The surface roughness also shows a small variation unlike the results for 

[H⋅]. The average surface roughness with error bars of 1 standard deviation over 

the variation of H2 is shown below in Figure 30. The measurement of surface 

roughness can sometimes be affected by local structure effects, so there are 

bound to be outliers in any set of simulations. However, it is clear from the figure 

below that there is a slight linear dependence in the surface roughness as [H2] 

increases. A change of approximately 1 ML of surface roughness is observed 

from the lower to higher concentrations. One ML is larger than one standard 

deviation of all the simulated measured values. 

 

Figure 30-Average surface roughness over the varied fraction of the standard [H2] in 
NCD growth conditions. 

 The kMC program is likely not sensitive enough to changes in [H2] for any 

error in its estimation to affect the outcome. The above results do show that the 

program does model the microscopic physics as intended with regard to 

kdeactivate’s dependence on [H2]. 



 82 

[CH3] 

 As shown previously in Chapter 1 the methyl radical is considered to be the 

most important molecular species in terms of carbon addition to the growing 

diamond.17,22 Therefore the concentration of CH3 above the growing diamond 

surface is a key parameter to determine in order to have an accurate model of 

diamond growth. Here, as for H2 and H, we test the sensitivity of the kMC 

output to variations in [CH3].  

 The results of this test for diamond growth rates can be seen in Figure 31 

below. The first strikingly obvious feature of this plot is the direct linear 

dependence of the growth rate of the resulting diamond with the variation in 

[CH3]. The magnitude of this change is also greater than with the same variations 

in the relative magnitudes of [H] and [H2]. This result shows that [CH3] is an 

important parameter to accurately model in order to obtain results comparable 

with experiment.  

 

Figure 31-Growth rate over the varied fraction of the standard [CH3] in NCD growth 
conditions. 

 The surface roughness is significantly affected by the concentration of CH3 

due to the considerably increased growth rates which occur without a 
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corresponding increase in surface migration. The added number of surface ad-

species per unit time does increase the rate of migration as [CH3] increases, but 

not fast enough to compensate for the increased re-nucleation of a new islands 

and layers. The results for surface roughness over the tested range of [CH3] are 

shown below in Figure 32. The average RMSD of the surface height increases 

linearly from 1 to 100% fraction of the standard concentration. It then continues 

to increase, but with a less steep gradient.  The results have the outliers typical of 

the local structure effects mentioned before. However, there is a clear correlation 

between [CH3] and the surface morphology.  

 

Figure 32-Average surface roughness over the varied fraction of the standard [H2] in 
NCD growth conditions. 

3.3.4. Substrate temperature 

The substrate temperature (Ts) is one of the more important experimental 

parameters as it can be controlled and observed relatively easily. It governs the 

growth rate and morphology of the resultant diamond almost as much as the gas 

mixtures.23–25 Experimentally the variation of the growth rate with Ts passes 

through a maximum.  To date, only one other kMC model has shown a peak in 

growth rates versus substrate temperature.26 This was for growth on the (111) 
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surface, which is no longer seen as a growth facet as important as the (100) 

surface. Previous models of CVD diamond growth did not predict this peak for 

growth on the (100) surface even though this is now thought to be the dominant 

growth facet. Neither did they show an increase in growth rate with temperature 

until the development of the Netto–Frenklach model.13 However, there has been 

no theoretical explanation of this behaviour, only speculation.  Our model 

reproduces this peak seen in Figure 33, which shows growth rate as a function of 

substrate temperature for several simulations and experiments.  The data from 

experiment 23,24 shows a peak just above 900 °C and our model peaks just below 

1000 °C. 

 

Figure 33– A comparison of CVD diamond growth over a range of substrate 
temperatures. 

(a)  Our model with NCD growth parameters 
(b)  Our model with MCD growth parameters 
(c)  Our model with Frenklach H rate constants 
(d)  Netto and Frenklach, Diamond Relat. Mater. 14, 1630 (2005) 
(e)  Kweon, Lee, and Kim, J. Appl. Phys. 69, 8329 (1991) 
(f)  Kondoh, Ohta, Mitomo, and Ohtsuka, Appl. Phys. Lett. 59, 488(1991). 

The Netto–Frenklach model predicts a linear increase in growth rate at all 

substrate temperatures. There is no maximum. The kinetic processes and their 

associated rate constants that were included in the Netto–Frenklach model were 
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compared with our own current model to determine which processes were 

responsible for the difference. A difference in rate constants for the ‘surface 

deactivation’ processes was singled out.  This process was modelled by Netto 

using only the reaction of an H⋅ radical adsorption to the surface with a non–

Arrhenius (no temperature dependence) rate.  The addition of H from an H2 

abstraction reaction with a surface radical species and temperature dependence 

for both was not included in the Netto model but was in ours.       

The rate constant for surface deactivation in our model was changed to 

equal the Frenklach model. Another series of simulations varying substrate 

temperature using the new rate constant were performed and the results were 

then compared (Figure 33).  We reproduced the results by this simple change, 

thus suggesting that it is the missing H2 reaction that we have included in our 

model and the temperature dependence that of the hydrogen reactions that help 

determine this peak in growth rate.  As the temperature of the substrate increase, 

these reactions occur more frequently. At first this allows more adsorption to 

occur, but after Ts approaches a certain point there is a decrease in the available 

number of active surface sites available for CXHY adsorption. 

3.3.5. Gas temperature 

The gas temperature near the surface, Tns, affects the mean collision 

frequency of gas phase species with the surface. This effect was modelled in our 

kinetic rate constant equations by including a linear dependence on Tns in the 

pre-exponential factor.    

In microwave CVD reactors, the temperature at the centre of the gas Tgas is 

measured reasonably accurately in experiments by laser spectroscopy equating 

Tgas with the average rotational temperature of the gas.27 The temperature 

decreases the further away the gas is from the centre.  A computational 

continuum model of gas flow and thermal diffusion of a MW CVD reactor was 

created as part of a collaboration between the diamond group in Bristol and Y.A. 
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Mankelevich at Moscow State University.28 The gas temperature near the surface 

was taken from this model which was discussed previously in Chapter 1.  

As the value for Tns in Table 5 is 1267 K a set of simulations was run with 

Tns between 267 and 2267 K (±1000 K) at 100 K intervals. The results for the 

growth rate and surface roughness are shown in Figure 34 below. The base 

conditions for these simulations were the NCD parameters from Table 5 with a 

25×25 grid and a total simulated time of 150s for each. As Tns increases the flux of 

CHX (Equation 7) species increases, as well as the reactions that govern the rate of 

activation and deactivation (Equations 2, 5, and 6). The absolute magnitude of 

change in the growth rate over the 2000 K variation is approximately 3 µm hr-1; 

the top graph in the figure below shows this increase as a function of Tns. The 

increase is slightly non-linear. This is probably due to the fact that equation 3 is 

not dependent on Tns. While the flux of carbon increases linearly with 

temperature, the ratio of activated surfaces sites does not.  This is merely an 

artefact of how we chose to represent ka-i, ka-ii, kb-i, and kb-ii which does not affect 

the outcome too much. 
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Figure 34-Variation of Tns over 2000 K from 267 K to 2267. The top plot shows the 
growth rate (in µm hr-1) and the second shows surface roughness (in monolayers) both as 
a function of Tns. 

 The bottom graph in Figure 34 shows the difference in the average surface 

roughness over the variation of Tns. Here the surface morphology shows a 

patterned dependence on the varied parameter, unlike some of the tests above 

where the growth rate varied and the surface morphology showed no change 

within the statistical limits of the measurement. It can be seen from the error bars 
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in the data points and the fitted line that there is a distinct linear dependence 

between average surface roughness and Tns. While the data is noisy the surface 

roughness does appear to have a positive correlation with an increase in Tns.    

3.3.6. Reaction rate constants 

kactivate 

 The rate constant for the activation of inactive surface sites and ad species is 

governed by Equation (1) shown in section 3.1.2. This rate is mainly determined 

by the concentration of radical H⋅ in the gas phase and the rate at which it is 

adsorbed to the surface, ka–i (Equation (2)).  The sensitivity of the kMC model to 

the accuracy of the [H⋅] was reported in section 3.3.3 as its variation affects more 

than one process in the model. Here we test the sensitivity of output to the 

activation energy in the rate constant ka-i, which was determined experimentally, 

as it only affects the rate of activation (surface and ad-species - kactivate). This is 

then combined with the gas concentration data to develop a coherent picture of 

how the two affect the rate of activation in the kMC program. 

 In order to test the sensitivity of the program to the error in the activation 

energy obtained for reaction ka–i this energy was varied by ±10 kcal mol–1. 

Twenty–one simulations where carried out with identical input parameters, the 

ones shown in Table 5. Each simulation differed in the energy of activation ΔEn 

by 1 kcal mol–1 such that ΔEn = ΔE0 + δΔE, where δΔE is an integer value 

between –10 and 10 kcal mol–1.  

 The results for both growth rates and surface roughness as a function of 

activation energies are shown as a function of kactivate in Figure 35 below. The 

values of growth rate are represented by the red squares (with an interpolating 

line) and vary from 0.1 to 25.6 µm hr-1. The growth rates increase rapidly as the 

rate of kactivate increases, but the rate of change in the growth rate levels off as 

activation exponentially increases. This is due to the fact that more surface sites 

are available as “dangling bonds” to which a gas phase molecule can adsorb. 
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Therefore more fundamental carbon growth steps can occur on the surface 

relative to other processes.  

 

Figure 35-Growth rate and surface roughness as a function of the per site rate constant 
kactivate for the data from the variation of the activation energies of ka-i.  

The surface roughness is shown by the blue circles in Figure 35 above. The 

surface roughness initially increases dramatically with an in increase in kactivate, 

but, it then precipitously falls to 0.8 / ML at kactivate = 7955 s-1. The surface 

roughness then steadily levels off to a value of 0.47 / ML which represents a very 

smooth surface where seen in monolayer growth regimes. This occurs due to the 

change in importance of other processes as the rate of kactivate varies. 

As the rate of surface activation increases, the ratio of active to non-active 

surface sites increases.  This leads to more carbon deposition and in this model a 

corresponding increase in etching as well. This increase in deposition and etching 

initially occurs at a faster rate than ad-species migration, accounting for the sharp 

increase in surface roughness at larger kactivate. However the increase in the rate of 
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activation and etching levels off as the surface ratio of active/non-active surface 

sites approaches one. After this the increase in kactivate affects the activation of ad 

species more, and this leads to an exponential increase in the rate of surface ad-

species migration.  

The growth rate, surface roughness, and per site rate kactivate for standard 

conditions (ka-i with activation energy of 3430 K) are 3.135 µm hr-1, 0.559 / ML, 

and 929 s-1.  The rate constant for reaction a-i (Table 2), as discussed above, was 

taken from an experimental study of H⋅ reactions on the diamond surface11. The 

experimental value for Ea obtained in this study for the H abstraction reaction 

was 6680±470 kcal mol-1. This is why the variation amount, δΔEa, was chosen to 

be 1 kcal as this is more than twice the experimental error. Our sensitivity 

analysis of the kMC program to a variation in this value of Ea shows that the 

results do not change much for this small variation. For simulations with δΔEa = 

± 1 kcal mol-1, the growth rate is 1.5 times that of the smaller activation energy. 

This is encouraging for our kMC model as it is not sensitive to the activation 

energy of reaction a-i within the bounds of the experimental error from which it 

was obtained.  

kdeactivate 

The rate constant for deactivation of surface and ad-species is governed by 

Equation 4. In theory, it is dependent on both [H⋅] and [H2]. However, the rate 

constant associated with the reverse H abstraction reaction (Equation 5, kb-ii) is so 

small as to make its contribution to kdeactivate negligible. In practice, the rate 

constant for the deactivation process is dominated by reaction b-i (Table 2) and 

the [H2] and kb-i are the more important parameters to test the sensitivity of 

kdeactivate. Since the sensitivity to variations in [H2] was discussed in 3.3.3 above 

only the test relating to kb-i is examined in this section. 

The rate constant kb-i was varied here in the same manner as ka-i was for 

kactivate above. The results for both growth rate and surface roughness presented 

as a function of the per-site rate constant for kdeactivate are shown below in Figure 

36.  
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Figure 36-Growth rate and surface roughness as a function of the per site rate constant 
kdeactivate for the data from the variation of the activation energies of kb-i.  

 The absolute rate of surface site deactivation, rdeactivate, increases as the 

activation energy, Ea, of rate constant kb-i decreases. This increase in rdeactivate 

relative to the absolute rate of surface site activation, ractivate, leads to fewer 

‘dangling bonds’ on the surface. This means there are fewer sites for carbon 

containing species to adsorb to on the surface, thus leading to a slower rate of 

growth as shown in the figure above. 

 Surface roughness as a function of the rate constant also decreases. This 

justifies the extension of the model into 3 dimensions as it can be attributed to 

increased surface migration, which is modelled more accurately in the 3d model. 

Migration increases proportionally to the rate of CH3 adsorption but still remains 

relatively high. There are fewer CH3 adsorbates landing on the surface, and those 



 92 

that do have fewer activated surface sites next to them, but migration still occurs 

relatively frequently when compared with the addition of another growth 

species. One of the main features of Figure 36 is that slower growth rates produce 

smoother diamond films. This is an effect that has been observed during 

experimental growth. 12 

kmigration 

 The activation energy in the Arrhenius equation (Equation 10) modelling 

CH2 migration on the surface was varied like the previous two energies. The 

energy was varied in steps of 1 kcal mol–1 from the energy used in the standard 

growth model +/– 10 kcal mol–1. This achieved a range of per site rates for 

migration between 2.38x106 s–1 to 1.05x1010 s–1, which represents a wide range of 

possible migration rates. Table 2 below shows a list of average migration rates 

during a simulation with the corresponding input. 

Table 7-Results from a series of a number of simulations in which the activation energy of 
the migration rate constant was varied (column 1). The resulting per site rate  
determined from the rate constant and the averave overll rate of migration are given. 

Energy 
/J 

Rate per site 
/ s–1 

Average 
migration 
rate / s–1 

Standard 
Dev. / s–1 

86560 8.57××109 4006.78 507.505 

90744 5.58××109 3785.17 467.525 

94928 3.63××109 3717.09 505.638 

99112 2.36××109 3917.82 576.773 

103296 1.54××109 3707.22 600.366 

107480 1.00××109 3925.27 488.732 

111664 6.53××108 3618.89 593.086 

115848 4.25××108 3738.8 477.734 

120032 2.77××108 4058.13 770.65 

124216 1.80××108 3976.11 570.305 

128400 1.17××108 3744.65 552.279 

132584 7.64××107 3930.99 670.972 

136768 4.98××107 3767.64 789.378 

140952 3.24××107 3768.12 564.994 

145136 2.11××107 3784.37 711.979 

149320 1.37××107 3766.26 529.955 

153504 8.94××106 3704.36 632.606 

157688 5.82××106 3806.79 577.247 
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161872 3.79××106 3714.66 541.146 

166056 2.47××106 3702.65 623.239 

170240 1.61××106 3621.28 705.388 

 One interesting detail that emerges from this result is that the actual rate of 

migration for CH2 surface species does not depend on the per site rate constant. 

The rate is being limited by another process, most likely the distribution of 

activated surface ad–species adjacent to an active surface site. The rate at which 

this occurs is obviously much slower than the actual migration. This effectively 

means that if these two species are neighbours then the CH2 surface ad species 

will migrate. 

 Another important result of this test is that neither the growth rate, nor 

surface roughness showed any correlation with the activation energy for the per 

site rate constant of migration. It can be seen in Figure 37 below, that the surface 

roughness approached a limiting roughness typical of MCD simulations. The 21 

simulations with varied activation energies did not statistically deviate from this 

roughness limit. The growth rate for these simulations had an average of 

0.883±0.002 µm hr–1. This clearly shows that the kMC model is not sensitive to the 

activation energy of surface CH2 migration. Although migration is an important 

feature of the model, the overall rate of CH2 migration is not sensitive to any 

errors in activation energy as the availability of an activated site to migrate to 

determine the overall rate. 



 94 

 

Figure 37-Surface roughness as a function of simulated time for multiple simulations 
with different values of Ea for the migration rate constant.  

ketch 

 Finally, the sensitivity of the original etching model described by Equation 

8 was tested. In this model, the rate constant for etching is a fraction of the rate 

constant for CH3 adsorption. Eleven simulations were run using the NCD gas 

parameters from Table 5 with a 25×25 grid for a total simulated time of 25 s each. 

The only difference was in the fractional multiplier, f from Equation 8. This was 

varied from 0 to 1 in increments of 0.1. 

 The only process that was significantly affected by this change was the rate 

of etching. A strong linear correlation was observed between the rate of etching 

and the fractional constant f, which is obvious. While the rate of CH3 adsorption 

did not change, the increased rate of etching led to a linear decrease in growth 

rates albeit small with a magnitude change of approximately 1 µm hr-1. A linear 

fit of the growth rate vs percentage of CH3 adsorption rate gave a rate of change 

for growth rate as -0.0114 µm hr-1 / percent.   
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3.4. Conclusions 

A new 3-dimensional kinetic Monte Carlo (kMC) model of chemical vapour 

diamond (CVD) growth was introduced.  This model is based on extensive 

theoretical work done previously at the Bristol University diamond group and 

Moscow state university. A detailed description of the kinetic model of surface 

reactions involved in CVD diamond was given. This is the kinetic model used as 

the rate catalogue for the kMC program developed during the course of this 

work.  

The parameter space of the model was systematically explored to determine 

its sensitivity of output to the input parameters gathered from experiments and 

theoretical calculations. Each simulation was performed with a sufficiently large 

surface and long simulation time to be considered statistically equilibrated 

(sections 3.3.1 and 3.3.2). It was found that the growth rates and surface 

roughness are most sensitive to the concentration of CH3 as this affects the rate of 

adsorption. This is the one rate that determines the general output more than any 

of the others. Variations in the other gas concentration [H] and [H2] did not affect 

the output as dramatically.  

The temperature of the substrate is a measure that can easily be compared 

directly with experiment. It has been found that the growth rate of CVD 

diamond increases with temperature but then decreases after a point. Other kMC 

models of diamond growth have been unable to reproduce this peak, but this 

model has. These results were compared with other computations 13,29 and 

experimental data. 23 

 The variation in the rate constants kactivate, kdeactivate, kmigration , and ketch has 

been analysed. It was found that the model reproduces smoother surfaces at 

slower growth rates which have also been observed experimentally. 12 The 

absolute rate of CH2 migration is not greatly affected by change in the per-site 

rate constant, which means that accurate information about the energetics of the 
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process is not that important as this process is regulated by the number of 

available surface sites available for migration.  
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  Chapter 4

Surface morphology studies  

4.1. Introduction 

In this Chapter the surface morphology of the diamond ‘grown’ using the 3-

dimensional kinetic Monte Carlo (kMC) model is investigated. It was shown in 

Chapter 3 that the geometric configuration of molecules around a reacting site in 

the model will affect the rate of that reaction in different ways compared to the 2-

dimensional model. This difference is most evident in the resulting surface 

structures formed by these reactions (e.g. different size and qualities of 

polycrystalline diamond films). 

  There are three surface restructuring processes in the model that will affect 

the surface morphology most: CH3 etching, CH3 adsorption, and migration. 

Changes to how the etching and adsorption of CH3 are modelled from previous 

studies are examined, and the effects these changes have on the resultant surface 

are discussed. Although the way migration is modelled was not changed from 

the previous model, its effect on surface structure was systematically tested by 

comparing results from growth with migration turned off with results from 

normal growth.   

4.1.1. Surface structure metric 

In the work presented thus far, the only metric of surface structure 

presented has been the standard deviation of the surface height, which has been 

investigated as a function of time. While this is a customary measure of surface 

roughness used in surface sciences, by itself it lacks the detail necessary to 

differentiate between different surfaces with a similar standard deviation. A 
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simple but instructive example is shown below showing how the surface 

roughness measure is unable to distinguish between peaks and troughs on a 

surface. Figure 38b is a pyramid, and Figure 38b is an exact inversion of this 

pyramid. Both of these structures have a surface roughness measurement of 

2.469 ML. 

 

Figure 38-A pyramid in figure (a) and an exact inversion of this pyramid in figure (b) 

 There is clearly a significant difference between the two structures shown in 

the above figure even though they both have the exact same value for the 

roughness parameter discussed in Chapter 3. Clearly another numerical value to 

quantify this difference is required. In surface engineering the statistical 

distribution of the surface heights is analysed to determine the type of surface 

being probed.1,2 The median (RM), arithmetic mean (Ra), standard deviation (RSD) 

are used to determine the roughness of the surface (RSD), which has already been 

discussed, the averaged surface height (Ra), and RM is used to determine whether 

the mean is normally distributed.  Two more statistical moments are also used; 

the skewness (Rsk) is third standardised moment, which measures how the data is 

‘skewed’ around the mean, and kurtosis (Rku) which measures the ‘peakedness’ 

of the distribution is the fourth standard moment. In Figure 38 above, the 

pyramid has a positive Rsk value while the inverted pyramid has a negative Rsk 

value. A diagram of how these are related to a 2-dimensional profile is shown 

below in a figure taken from surface study of optics.3 Figure 39a shows two 
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surface profiles whose surface height distributions have positive and negative 

skewness respectively. The surface with an Rsk > 0 has more peaks than troughs, 

where the opposite is true for surfaces with an Rsk < 0. For the kurtosis of a 

distribution (Figure 39b), a peaked distribution Rku > 0 the surface is more spiked 

whereas if Rku < 0 (i.e. a flatter distribution) then the surface will have broader 

peaks that are more plateau-like. 

 

Figure 39–Illustration of how the shape of a surface height distribution is affected 
by the surface structure 3 (a) skewness (Rsk) shows whether the surface has more 
peaks or pits and (b) the kurtosis demonstrates the smoothness or sharpness of the 
surface peaks. Reproduced from 3.  

 The distribution of surface heights and their statistical moments are used in 

the work below to better quantify the types of surfaces produced from the 

various surface structuring process models.    

4.1.2. Critical nucleus 

The mechanism by which the nucleation of a new layer occurs in chemical 

vapour deposition (CVD) diamond growth has been discussed in the literature.4,5 

In the work published previously by our group for the 2-dimensional model 5–9 

the critical nucleus was assumed to be a 2 ‘block’ dimer. This was the smallest 

number of ‘blocks’ (carbon containing species) that could nucleate a new layer of 

growth. However this was never explicitly proven by monitoring the growth 

behaviour in detail, and activated surface blocks were allowed to etch. It has 

been suggested that the critical nucleus could be as large as four on the (111) 

surface.4  
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A method to determine the smallest configuration in the new 3-dimensional 

kMC model which constituted a new layer of growth was developed.   A post 

processing program was created that monitored the following properties after 

each surface restructuring event (adsorption, etching, and migration): monomer 

creation, monomer growth, monomer loss, dimer growth, dimer loss. A 

monomer creation event occurs after a CHX (block) lands on the surface or 

migrates to a position on the surface where there are no neighbouring sites 

where the surface level is greater than or equal to the surface site in question. A 

monomer growth event occurs when a monomer migrates next to another block 

or existing terrace of n-block size, or if a block lands adjacent creating a dimer or 

completing an n-block row or terrace. A dimer growth is the same but with an 

initial 2-block unit. A monomer loss is when one block with no nearest 

neighbours migrates or is etched away. A dimer loss is in the same vein as a 

monomer loss, but with an initial 2-block set with no other nearest neighbours. 

Keeping track of dimer growth events, including all of the possible events 

such as 2-mer to 9-mer, or dimer to n-mer became computationally expensive 

and complex; the expense and complexity increased considerably when 

monitoring trimer growth and loss. It was therefore decided that it would be 

sufficient to only proceed up to dimer growth and loss as this study could be 

more narrowly concerned with whether or not the dimer was the critical nucleus. 

If the critical nucleus was found to be larger than a 2-block configuration then a 

modified method for evaluating the critical nucleus would be devised. 

4.2. Etching 

In Chapter 3 the three different models (Equations 3.8 – 3.11) that have been 

used to simulate the etching of carbon from the diamond surface under CVD 

conditions are described. This effect has been observed experimentally 10, but the 

mechanism by which this occurs is still debated in the literature 5,11–13. In this 

section the results from a series of simulations using each model separately are 

discussed. 
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4.2.1. Computational detail 

Simulations were conducted for each etching model defined in Chapter 3 

using the reactor conditions from five different growth regimes taken from gas 

phase reactor modelling. 14 These growth parameters can be found below in 

Table 8; they include the concentration of gases involved in the growth process, 

the temperature of the growing substrate and the gas layer near the substrate, as 

well as the steric parameters for the growth species (Chapter 3). Each individual 

simulation was carried out on a 50×50 grid and run for a sufficient time to be 

statistically equilibrated.  

Table 8 - Gas and temperature conditions for CVD diamond growth modelling single 
crystal (SCD), microcrystalline (MCD), nanocrystilline (NCD), and ultra-
nanocrystilline (UNCD) diamond (both from hot filament (HF) and microwave (MW) 
type reactors). (s and g are steric parameters for the growth species described in Chapter 
3). 

  SCD MCD NCD UNCD(HF) UNCD(MW) 

[H·]  / cm-3 3.38×1016 1.85×1014 1.52×1014 3.00×1013 4.31×1014 

[H2]  / cm-3 9.33×1017 1.52×1017 1.51×1017 1.83×1017 2.06×1016 

[CH3·]  / cm-3 3.24×1015 1.46×1013 5.68×1013 3.82×1013 5.60×1011 

s 0.50 0.50 0.50 0.50 0.50 

g 0.15 0.15 0.15 0.15 0.15 

[CH2·]  / cm-3 1.02×1012 3.66×1010 8.12×1010 1.55×1010 2.31×109 
s 0.60 0.60 0.60 0.60 0.60 
g 0.20 0.20 0.20 0.20 0.20 

[CH·]  / cm-3 1.60×1013 2.74×108 6.53×108 5.28×107 7.05×108 

s 0.70 0.70 0.70 0.70 0.70 

g 0.25 0.25 0.25 0.25 0.25 

[C·]  / cm-3 1.41×1012 3.37×109 5.45×109 1.05×107 1.47E×1011 

s 1.00 1.00 1.00 1.00 1.00 

g 0.30 0.30 0.30 0.30 0.30 

Ts / K 973 1173 1173 1173 873 

Tns / K 1736 1267 1267 1145 1263 
 

In order to directly compare the results from all three models it was 

necessary for each model to have similar rate constants for the initial 

configuration where an activated adatom had no next nearest neighbour (NN=0). 

The original model for CH3 etching,9 governed by Equation 3.8, was merely the 
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function of a linear scaling parameter, f, in order to get ketch to equal a fraction of 

kCHxadd , as it has been observed in experiment that the two are related.10,15 The 

original rate ketch was set equal to the Eyring etching model keyring (Equation 1) and 

this expression was then solved for f (Equation 2).   

𝑘𝑒𝑡𝑐ℎ = 𝑓𝑘𝐶𝐻𝑥𝑎𝑑𝑑 =
𝑘𝐵𝑇𝑠

ℎ
𝑒𝑥𝑝 (

−𝛥𝐺𝑒𝑡𝑐ℎ
‡

𝑅𝑇𝑠
)      (1) 

 

𝑓 = (
𝑘𝐵𝑇𝑠

ℎ
𝑒𝑥𝑝 (

−𝛥𝐺𝑒𝑡𝑐ℎ
‡

𝑅𝑇𝑠
))

1

𝑘𝐶𝐻𝑥𝑎𝑑𝑑
           (2) 

Each rate constant for CH3 adsorption is different for the five growth 

regimes shown in Table 8 due to the different concentrations of CH3 above the 

surface in each model CVD reactor. Therefore, in the original model for etching 

the value of ketch will be different for each growth system if the value of f is 

constant. However, the Eyring model of etching is dependent on the temperature 

of the growing substrate, Ts, not gas concentration for determining the rate 

constant for etching. In the five reactor models, there are only three different 

values for Ts. In the growth models for MCD, NCD, and ultra nanocrystalline 

diamond grown in a hot filament reactor UNCD(HF) Ts = 1173 K while for single 

crystalline diamond (SCD) and ultra nanocrystalline diamond grown in a 

microwave plasma reactor UNCD(MW)  Ts = 976 K and  873 K respectively. Thus 

there are only three different values of keyring for the five simulated conditions. 

Equation 2 was solved for all of the values of keyring and kCH3add, and the solutions 

for f and the resultant value of ketch for that f when back substituted into Equation 

1 are found below in Table 9. 

Table 9-Calculating the f parameter for the original model of etching by comparing ketch 
and keyring for each of the growth conditions from Table 1. 

  SCD MCD NCD UNCD(HF) UNCD(MW) 

kCH3add 6095.34 23.46 91.29 58.36 0.90 

ketch 2.81 527.73 527.73 527.73 0.08 

keyring 2.81 527.73 527.73 527.73 0.08 

f 0.00046 22.49 5.78 9.04 0.095 
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4.2.2. Results 

Comparison of etching models 

A number of results from the set of simulations described above are shown 

in Figure 40; different measures are compared across etching model types and 

arranged according to growth conditions. Frames (a), (b), and (c) deal with the 

CH3 adsorption rate, the average etching rate, and the ratio of the two 

respectively. Only the etching model differs between these calculations, but 

clearly the overall rate of CH3 adsorption (Figure 1a) as well as overall rate of 

etching (Figure 1b) is affected by this difference.  Most of the simulated growth 

regimes follow the same pattern across the different etching models. For 

example, both CH3 adsorption and etching rates increase dramatically from the 

original model to the linear model, and then decrease slightly with the 

exponential model. This is due to an increased etching rate creating more 

adsorption sites and the exponential model having a slightly slower rate of 

etching as the value of ketch for NN=1,2,3,4 is less than the equivalent value of 

ketch for the linear model of etching.  
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Figure 40-Results from the simulation of SCD, MCD, NCD, and UNCD growth for all 
three etching models described above and in Chapter 3. The results in plot (a) are the 
average rate of CH3 adsorption (rCH3add) for each simulation, plot (b) is the average 
etching rate (retch), (c) is the ratio of the two retch/rCH3add, (d) is the average surface 
roughness for each simulation and (e) is the corresponding total growth rate. 
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Surface height probability distributions 

Surface roughness, in frame (d) of Figure 40, is the only measure of 

morphology given in that figure. This is an average of the final two-thirds of the 

surface roughness versus time plot which is the standard deviation of the height 

profile (Chapter 3). This measure by itself is a blunt tool with which to quantify 

detailed differences in surface morphology. The surface roughness, or the 

standard deviation of the surface height profile, describes the absolute deviation 

of the height over the whole surface. A surface with deep pits can have a surface 

roughness measure similar to another surface with sharp peaks.  Therefore it will 

be necessary here to use other statistical measures based on the surface height 

distribution, which were discussed in section 4.1. Namely, RM – median, Ra – 

arithmetic mean, RSD – standard deviation, Rsk - skewness, and Rku – kurtosis.   

 Each of these measurements is a description of a unique characteristic of a 

probability distribution; in this context, a distribution of surface height.  In Figure 

41 the normalised probability distributions of the simulated surfaces from the 

SCD, MCD, NCD, UNCD(HF), and UNCD(MW) growth conditions described 

above are presented. The results from these simulations for the five reactor 

conditions are directly compared between each model of etching; the original 

model, the Eyring model with linear dependence on the number of nearest 

neighbours, and the Eyring model with exponential dependence on the number 

of nearest neighbours. The statistical measures describing each of these 

distributions are presented in section 4.1.1.  

There are two distinct features of Figure 4 that are immediately noticeable. 

The first is that the surface height distributions for SCD simulations in all models 

of etching appear to be similar, while the distributions for the other growth 

models have different distributions for different etching models.  This is due to 

the lack of any substantial etching in any of the SCD growth regimes. Although 

this is also the case for the UNCD(MW) regime, but the distribution are not the 

same shape. The other feature that stands out is that the linear Eyring model of 

etching produces a distinct distribution of surface heights for all of the other 

growth regimes, while many of the distributions from the original model are 
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similar in appearance to the distributions produced for the exponential Eyring 

model of etching.  

This distinction between the linear model and the other two etching models 

can be further investigated by comparing some the statistical measures of each 

distribution (Table 3) with the others of the same growth regime. Except for the 

mean and median values, which were chosen to be the same across a growth 

regime, the statistics confirm our visual deduction that the linear etching model 

produces a quantifiably different surface morphology from the original and 

exponential models.  
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Figure 41-Normalised probability distributions of the final surface height for the set of 
results discussed above and in Figure 40. The red, green, and blue distributions are of the 
results from the original etching model, the Eyring model with a linear NN dependency, 
and the Eyring model with an exponential dependency on the NN. 
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There are two distinct features of Figure 41 that are immediately noticeable. 

The first is that the surface height distributions for SCD simulations in all models 

of etching appear to be similar, while those produced from the other growth 

models have different distributions for different etching models.  This is due to 

the lack of any substantial etching in any of the SCD growth regimes. Although 

this is also the case for the UNCD(MW) regime, but the distribution are not the 

same shape. The second feature is that the linear Eyring model of etching 

produces a distinct distribution of surface heights for all of the other growth 

regimes. While many of the distributions from the original model are similar in 

appearance to those produced for the exponential Eyring model of etching. 

This distinction between the linear model and the other two etching models 

can be further investigated by comparing statistical measures of each distribution 

(Table 10) with the others of the same growth regime. Except for the mean and 

median values, which were chosen to be the same across a growth regime, the 

statistics confirm our visual deduction that the linear etching model produces a 

quantifiably different surface morphology from the original and exponential 

models.  
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Table 10-Statistical measures related to the distributions shown in Figure 41. 

    
Original 
Model 

Linear 
model 

Exponential 
model 

SCD RM 15 14 15 

  Ra 14.7080 14.3392 14.5984 

  RSD 0.6489 0.6562 0.7068 

  RSk -0.0929 0.4887 0.0912 

  Rku 0.5163 0.2359 0.5265 

MCD RM 66 66 76 

  Ra 66.0124 66.1972 75.8512 

  RSD 1.1830 0.8671 1.0678 

  RSk -0.4023 0.1716 -0.3381 

  Rku 0.5274 -0.1601 0.6122 

NCD RM 73 74 77 

  Ra 73.2024 73.7188 77.2400 

  RSD 1.2918 0.8970 1.6285 

  RSk -0.9067 0.1659 -0.4181 

  Rku 2.6010 0.0428 0.9796 

UNCD(HF) RM 25 27 26 

  Ra 24.6584 27.5000 26.3688 

  RSD 1.6329 1.0344 1.7158 

  RSk -0.6775 0.0488 -0.5803 

  Rku 1.6380 0.1029 1.0779 

UNCD(MW) RM 7 7 7 

  Ra 6.9504 7.4516 7.0820 

  RSD 0.7337 0.7186 0.6555 

  RSk 0.0654 0.5254 0.1099 

  Rku 1.3407 0.5159 1.8925 

 

In the results presented in Table 10, including the SCD simulations, the 

kurtosis is similar in both the original and the exponential models, but less 

similar for the linear model. This reflects having larger flat plateaus. An example 

of this can be seen in a visualisation of the surfaces for the NCD growth 

simulations (Figure 42-Figure 44). Both Figure 42 and Figure 44 have pronounced 

hillocks and valleys. However, Figure 43 (linear etching model) shows large 

continuous plateaus. This is possibly due to the fact that the ratio of etching to 

CH3 adsorption is lowest with the linear etching model for MCD, NCD, and 

UNCD(HF) growth simulations (Figure 40 (c)). These are also the growth 
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regimes that show the linear etching model with the lowest average surface 

roughness values (Figure 40 (d)).  

Surface visualisation 

 It is useful to visualise the surfaces that produced the probability 

distributions shown in Figure 40 with the subsequent statistics from Table 10 to 

understand how these compare with the actual modelled surface. However, to 

produce an image from each surface reported above would be unnecessary. It is 

sufficient to look at one set of images from a selected growth regime across all 

three etching models and generalise how the statistics of the height distribution 

are related to an image of the surface. The images that follow are an in-plane 

view of the growing surface. So if the growing (100) surface is the z-coordinate 

then these images represent the xy-plane. The grayscale used is to give 

perspective. Black is the colour of the deepest point and white of the highest 

point on the surface. 

 The surfaces of the NCD simulations were chosen for visualisation, as their 

statistics are varied and the growth has a significant proportion of etching. The 

first snapshot (Figure 42) is of a surface with an average height of 73.2 ML and 

was simulated using the original model of etching. The surface has small hillocks 

with deeper small wells at various places on the surface; this is described by the 

negative Rsk value. The relatively high positive kurtosis value means that the 

distribution of surface heights is more peaked with a light tail. This means that 

the surface hillocks are more plateau like, and combined with the negative 

skewness this means that there are deep pits distributed amongst flat hillocks.  



 113 

 

Figure 42-Snapshot of the simulated surface of a CVD diamond grown under NCD 
conditions with a 50×50 grid using the original model for etching. 

The second snapshot (Figure 43) shows the surface used to calculate the 

height distribution for the NCD surface with the linear model of etching. The 

average surface height is 73.7 ML, similar to that of Figure 42. This is a good 

example of a low Rku value of which the larger flat terraces are indicative. Also, 

having a relatively non-skewed distribution implies that there are no discernible 

pits or peaks in the surface. This is backed up by the instantaneous surface 

roughness measure, RSD, which is the smallest of those obtained with the three 

models of etching for NCD growth. The corresponding surface is in fact 

approximately half as rough as that obtained with the exponential model and 

two-thirds as rough as the one generated by the original model. 

Figure 44 shows a surface with an Ra value of 77.2 ML, again a similar 

average height of the other two surfaces. This surface was simulated with the 

exponential model of NN dependence for etching. There are a greater number of 

smaller terraces i.e. more nucleation sites that are not merging into larger terraces 

due to migration before a new nucleation site on the next layer has a chance to 
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form. Qualitatively Figure 45 looks much like Figure 43, the surface grown with 

the original model.   

 

Figure 43-Snapshot of the simulated surface of a CVD diamond grown under NCD 
conditions with a 50×50 grid using the Eyring model for etching with a linear 
dependence on next nearest neighbour. 
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Figure 44-snapshot of the simulated surface of a CVD diamond grown under NCD 
conditions with a 50×50 grid using the Eyring model for etching with an exponential 
dependence on next nearest neighbour. 

Quantitatively the surface roughness and skewness are similar. That means they 

are both rougher (RSD) than the surface from the linear model and have more pits 

(Rsk) than mounds. However the value of Rku for the exponential model means 

that the peaks are sharper than on the surface from the original model.  

Critical nucleus 

Another aspect of surface morphology that was measured, as discussed in 

Section 4.1.2, is the critical nucleus of a new layer which was described at the 

beginning of this chapter.  The first pertinent piece of information to point out is 

the fact that the critical nucleus for all growth regimes in all models of etching is 

the two block dimer. This was the same number of blocks that was assumed to be 

the smallest number of immobile and unetchable blocks on the surface that led to 

a new layer in the 2-dimensional model.   
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Table 11-Fraction of monomer creation, growth, loss, dimer growth, and loss out of a 
total possible number of surface restructuring events for the five growth conditions listed 
in Table 8. The values for the original model (OM), linear model (LM), and exponential 
model (EM) are directly compared for each growth regime.  

  

Monomer 
creation 

Monomer 
Growth 

Monomer 
Loss 

 Dimer 
growth 

 Dimer 
Loss 

SCD OM 0.88538 0.00189 0.88390 0.00218 0.00045 

 
LM 0.87497 0.00194 0.87340 0.00241 0.00042 

 
EM 0.88411 0.00203 0.88253 0.00258 0.00048 

MCD OM 0.71001 0.00895 0.70205 0.01019 0.00224 

 
LM 0.71727 0.00946 0.70870 0.00991 0.00248 

 
EM 0.70944 0.00915 0.70145 0.00979 0.00241 

NCD OM 0.56703 0.01747 0.54978 0.01806 0.00368 

 
LM 0.58492 0.01869 0.56550 0.01786 0.00406 

 
EM 0.55466 0.01694 0.53763 0.01732 0.00344 

UNCD(HF) OM 0.46302 0.02985 0.42772 0.03024 0.00277 

 
LM 0.44951 0.03134 0.40878 0.02855 0.00350 

 
EM 0.48126 0.03183 0.44397 0.03247 0.00327 

UNCD(MW) OM 0.85622 0.00321 0.85347 0.00381 0.00057 

 
LM 0.82775 0.00322 0.82481 0.00410 0.00042 

 
EM 0.83420 0.00304 0.83147 0.00428 0.00040 

 

 While the critical nucleus was the same for all growth regimes in all etching 

models this does not mean there is nothing to say about these results in general. 

The fraction of monomer creation appears to be loosely related to the average 

crystal size observed experimentally for each simulated reactor type. For SCD 

growth the fraction of monomer creation is 0.88 on average; this is the largest of 

all growth types. Moving on to polycrystalline growth, the fraction of monomer 

creation for the MCD simulation is an average of approximately 0.71. This trend 

continues as the crystal size decreases (NCD and UNCD), and the fraction of 

total events that are monomer creations decreases as well. This can be attributed 

to polycrystalline growth regimes having more unique islands and thus having a 

greater chance of any single event involving a configuration greater than a single 

monomer. This is true with the exception of the results for (MW)UNCD growth, 

which more closely resemble SCD growth in all of the measures taken in this 

work. 
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4.3. CH3 adsorption 

In this section the effect of nearest neighbour geometry on the surface 

morphology of the CVD diamond surface is discussed. In Chapter 3 the rate 

constant for CH3 adsorption was introduced and the possible influence of local 

geometry on the adsorbing site was postulated. In most of the work using the 

kMC model in this thesis there is no nearest neighbour (NN) dependence. 

However, here this dependence is investigated and compared with a control 

growth without NN dependence on CH3 adsorption. 

4.3.1. Computational detail 

All of the results presented thus far have used a model for CH3 adsorption 

where its rate is not dependent on the configuration of the geometry surrounding 

the site. This model, described in Chapter 3, is governed by Equation 3.7. This 

approximation was more acceptable in the previous 2-dimensional model, 

however, as in 3-dimensions the effect of local structure will be more 

pronounced. The model was changed to have a simple inverse linear dependence 

of the adsorption rate constant on the number of nearest neighbour surrounding 

the site to which the CH3 molecule is adsorbing.  The amended expression for the 

rate constant for CH3 adsorption is shown by Equation 3 below. 

𝑘CH𝑥add =
𝑠CH𝑥𝑔CH𝑥

[CH𝑥]𝑣

4𝑁s(𝑁𝑁+1)
            (3) 

Simulations from each growth regime (Table 8) were completed using this 

new model of adsorption. Each simulation used a 50×50 grid and was executed 

until statistical equilibration (i.e. steady state rates) was achieved. The final 

surface of each simulation was analysed as in the previous section with a 

statistical distribution of the surface height and a visualisation of the final 

surface. 
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4.3.2. Results 

Surface height probability distributions 

 Figure 45 shows each surface height probability distributions for all 

simulations of each reactor type done with the new CH3 adsorption rate constant 

(Equation 3.7a) using the exponential model of etching. These are compared with 

the results from the exponential model of etching without the change in CH3 

adsorption. The juxtaposition of the two sets of results very clearly shows that a 

drastic change has occurred due to the addition of NN dependency in the CH3 

adsorption rate constant. However, the SCD and (MW) UNCD results show 

much less change than any of the other reactor types. 

 The rest of the results (MCD, NCD, and (HF) UNCD) for the NN 

dependency have distributions with similar shapes. These distributions are all 

positively skewed; the MCD and NCD results have a long fat tail (i.e. Rku < 0) and 

the (HF) UNCD are more normally distributed. The statistics for all of these 

distributions and the base distributions are given below in Table 12. 
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Figure 45-Comparison of the normalised probability distributions of the surface height 
profiles for the five growth regimes listed in Table 8. The red distributions were produced 
using a CH3 adsorption rate constant with no dependency on local structure. The blue set 
of distributions was produced using the rate constant for CH3 adsorption with an 
inversely proportional dependency on the number of nearest neighbours at the adsorbing 
site.  
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Table 12-Statistical measures related to the distributions in Figure 45 

  

No 
dependency 

NN 
dependency 

SCD RM 15 14 

 
Ra 14.5984 14.3340 

 
RSD 0.7068 0.8055 

 
RSk 0.0912 -0.5109 

 
Rku 0.5265 1.6707 

MCD RM 76 77 

 
Ra 75.8512 71.6420 

 
RSD 1.0678 18.8738 

 
RSk -0.3381 -0.8848 

 
Rku 0.6122 -0.2173 

NCD RM 77 76 

 
Ra 77.2400 71.3448 

 
RSD 1.6285 25.8740 

 
RSk -0.4181 -0.4437 

 
Rku 0.9796 -0.9538 

UNCD(HF) RM 26 28 

 
Ra 26.3688 26.1872 

 
RSD 1.7158 6.7155 

 
RSk -0.5803 -0.9621 

 
Rku 1.0779 0.2084 

UNCD(MW) RM 7 8 

 
Ra 7.0820 7.6280 

 
RSD 0.6555 0.8556 

 
RSk 0.1099 -0.6981 

 
Rku 1.8925 2.1793 

Surface visualisation 

 Snapshots of an MCD surface from both the NN dependent (test) 

adsorption model and one without NN dependency (control) are shown in 

Figure 47 and Figure 46 respectively. These two snapshots show a distinct 

difference in surface structure. The surface grown using the control model shows 

a smaller overall height difference than the other surface, thus leading to a 

significantly smaller surface roughness. Although the peaks and plateaus are 
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shorter in the control model they are sharper as evidenced by the positive 

kurtosis.  

 

Figure 46-Snapshot of the simulated surface of a CVD diamond grown under MCD 
conditions with a 50×50 grid using a rate constant for CH3 adsorption (Equation 3.7) 
with no dependency on the local structure of the adsorbing site.  
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Figure 47-A snapshot of the simulated surface of a CVD diamond grown under MCD 
conditions with a 50×50 grid, the rate constant for CH3 adsorption had an inversely 
proportional relationship with the number of nearest neighbours (Equation 3.7a). 
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 The test model (Figure 47) shows some interesting features not seen in any 

of the previous models with changes to surface structuring processes. There are 

well-defined facets, or ridges of plateaus with troughs separating them (the 

negative Rku value is indicative of this).  The surface morphology is similar to 

polycrystalline diamond grown experimentally and measured by atomic force 

microscopy (AFM).16 However a larger KMC unit cell, with a longer simulation 

time, might be necessary to make a more definite comparison. 

 These facets are reminiscent of the ‘caulliflower’ type growth observed in 

UNCD growth conditions.17 A visualisation was made of the surface generated 

using the test model under (HF) UNCD conditions. This snapshot is presented 

belown in Figure 48 and the small regular facets are clearly visible. If the inter 

atom distance between two carbon atoms on the (100) surface is taken as 3.57 Ǻ 

then these facets could represent crystal sizes of approximately 2 nm. This is 

about half the size of some of the smaller UNCD crystals observed 

experimentally.18    
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Figure 48-Snapshot of the simulated surface of a CVD diamond grown under (HF) 
UNCD conditions with a 50×50 grid, using the newer rate constant for CH3 adsorption 
from Equation 3.7a. 

Critical nucleus 

 The critical nucleus data for the modified adsorption model is presented in 

Table 13. It can be seen in these data that the fraction of monomer creation is 

always higher for the test case (Add), as well as for monomer loss. The fraction of 

monomer growth however is always less, which makes sense in light of the 

previous information about monomer loss. The fraction of dimer growth is lower 

for the test case in all regimes. The critical nucleus still appears to be the dimer, 

as the fraction of dimer growth is always larger than the fraction of dimer loss. 

However, there seems to be no apparent pattern in the fraction of dimer loss 

between the test and base case.  
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Table 13-Fraction of monomer creation, growth, loss, dimer growth, and loss out of a 
total possible number of surface restructuring events for the five growth conditions listed 
in Table 8. The values for the exponential model of etching (Base) and the changed NN 
dependent adsorption rate constant (Add) are directly compared for each growth regime.  

 
  

Monomer 
creation 

 
Monomer 
Growth 

 
Monomer 
Loss 

 Dimer 
growth 

 Dimer 
Loss 

SCD Add 0.93342 0.00064 0.93289 0.00083 0.00012 

  Base 0.88411 0.00203 0.88253 0.00258 0.00048 

MCD Add 0.79889 0.00637 0.79382 0.00555 0.00273 

  Base 0.70944 0.00915 0.70145 0.00979 0.00241 

NCD Add 0.61965 0.01261 0.60758 0.01221 0.00363 

  Base 0.55466 0.01694 0.53763 0.01732 0.00344 

UNCD(HF) Add 0.56343 0.02526 0.53480 0.02725 0.00297 

  Base 0.48126 0.03183 0.44397 0.03247 0.00327 

UNCD(MW) Add 0.89806 0.00159 0.89679 0.00151 0.00033 

  Base 0.83420 0.00304 0.83147 0.00428 0.00040 

4.4. Migration 

The model for the migration of an ad-species on the surface has not been 

changed, but its effect on surface morphology in the Bristol model has not been 

systematically explored previously. This is discussed in the following section. 

4.4.1. Computational detail 

It was shown in Chapter 3 that the spatial convergence of the kMC model 

was good at a 25×25 grid size. In the calculations presented above a 50×50 grid 

was used for additional spatial accuracy, as surface morphology measurements 

are more dependent on this. However, for computational efficiency, the 

calculations that follow were performed on a 25×25 sized grid. This is sufficient 

for the spatial accuracy required. All of the simulated reactor types from Table 8 

were used below. The base/control simulations were the kMC model with the 

Eyring model of etching with exponential dependence on nearest neighbours. 

The test simulations in this experiment were the same but with the migration 

process switched off. The result of these simulations is presented and compared 

in the next Section. 
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4.4.2. Results 

Surface height distributions 

The surface height distributions from the simulations described above are 

presented in Figure 49. The differences between the base and test simulations are 

most striking in the cases of SCD and (MW) UNCD growth. This due to these 

growth regimes being dominated by migration processes. In the SCD example 

the roughness measure jumps from RSD = 0.71 ML in the control simulation to 

more than four times that at RSD = 3.93 ML in the test simulation with migration 

switched off. The roughness value increases for all of the other growth types but 

not by as great a factor. In fact there is relatively little change in the MCD and 

(HF) UNCD examples, even though migration does occur with a high frequency 

in these regimes. This could suggest that etching plays a more significant role of 

determining the surface structure. In addition, the Rku value for these two 

simulations indicates that the surfaces, whilst not roughening significantly, do 

transform from having sharper peaks to more rounded plateaus.  
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Figure 49-Comparison of the normalised probability distributions of the surface height 
profiles for the five growth regimes listed in Table 8. The red distributions were base 
conditions while the blue results have the migration process turned off. 
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Table 14-Statistical measures related to the distributions in Figure 49. 

  

Migration 
on 

Migration 
off 

SCD RM 15 15 

 
Ra 14.5984 14.8752 

 
RSD 0.7068 3.9270 

 
RSk 0.0912 0.4332 

 
Rku 0.5265 -0.0928 

MCD RM 76 76 

 
Ra 75.8512 76.1664 

 
RSD 1.0678 1.2411 

 
RSk -0.3381 -0.1368 

 
Rku 0.6122 -0.0109 

NCD RM 77 77 

 
Ra 77.24 77.1856 

 
RSD 1.6285 2.3236 

 
RSk -0.4181 -0.2506 

 
Rku 0.9796 -0.3342 

UNCD(HF) RM 26 27 

 
Ra 26.3688 26.6608 

 
RSD 1.7158 1.9075 

 
RSk -0.5803 -0.4476 

 
Rku 1.0779 0.3972 

UNCD(MW) RM 7 7 

 
Ra 7.082 7.7760 

 
RSD 0.6555 2.5180 

 
RSk 0.1099 0.4712 

 
Rku 1.8925 0.2261 

Surface visualisation 

 The two Figures presented below illustrate the dramatic effect that surface 

migration of activated ad-species has on the surface morphology of the resultant 

simulated diamond. Single crystal (SCD) growth was chosen as this is the regime 

most affected by migration.  Figure 50 is the control surface and illustrates 

smooth terraces growing layer by layer; growth indicative of single crystal, i.e. a 

new layer does not generally nucleate before the previous layer is ~75% covered.   
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Figure 50-Snapshot of the simulated surface of a CVD diamond grown under SCD 
conditions with a 50×50 grid, using the new standard model with exponential etching. 

 

Figure 51-Snapshot of the simulated surface of a CVD diamond grown under SCD 
conditions with a 25×25 grid (four 25x25 images are shown in this image to make 
comparison with Figure 50 more straightforward), using the new standard model with 
exponential etching with ad-species migration turned off. 
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While Figure 51 was simulated using a 25×25 grid, all of the kMC 

simulations have periodic boundary conditions. So this Figure is shown 

containing four replicas of the underlying 25x25 system, to allow one to more 

easily compare it with the control Figure, which shows a 50x50 grid. Figure 51 

shows near stochastic growth, the greyscale illustrating the height of the 

snapshot looks like a slightly correlated random distribution. The contrast 

between these two figures plainly shows the importance of surface ad-species 

migration to SCD growth; it completely changes the morphology of the surface 

when it is turned off.    

Critical nucleus 

The results of the critical nucleus analysis of the migration simulations presented 

in section 4.4.2 are presented in Table 8 below. These results are the first time that 

the critical nucleus has been smaller than 2 blocks. In the SCD and UNCD (MW) 

growth systems the fraction of monomer growth is larger than the fraction of 

monomer loss, meaning that the critical nucleus for both of these regimes is the 

monomer, 1 block.  

Table 15-Fraction of monomer creation, growth, loss, dimer growth, and loss out of a 
total possible number of surface restructuring events for the five growth conditions listed 
in Table 8. The values for the exponential model of etching (On) and same model with the 
migration process deactivated (Off) are directly compared for each growth regime.  

 
  

Monomer 
creation 

Monomer 
Growth 

Monomer 
Loss 

Dimer 
growth 

Dimer 
Loss 

SCD On 0.88411 0.00203 0.88253 0.00258 0.00048 

  Off 0.2364 0.1361 0.0099 0.0769 0.0004 

MCD On 0.70944 0.00915 0.70145 0.00979 0.00241 

  Off 0.7711 0.0990 0.6575 0.0542 0.0442 

NCD On 0.55466 0.01694 0.53763 0.01732 0.00344 

  Off 0.4181 0.0921 0.3143 0.0564 0.0263 

UNCD(HF) On 0.48126 0.03183 0.44397 0.03247 0.00327 

  Off 0.5038 0.1039 0.3988 0.0603 0.0346 

UNCD(MW) On 0.83420 0.00304 0.83147 0.00428 0.00040 

  Off 0.2529 0.1352 0.0108 0.0790 0.0006 
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It was shown in previous sections that the surface structure of both of these 

systems depends heavily on surface ad-species migration, so the results here are 

consistent. For the rest of the growth regimes (MCD, NCD, and UNCD (HF)) the 

dimer is still the critical nucleus. 

4.5. Conclusions 

In this chapter the surface morphology of results obtained from the kMC 

model has been investigated. Three sets of tests for three different surface 

restructuring processes were implemented in this work.  The model of etching a 

CH3/CH2 (bridge) from the surface was the first test. The Eyring model of 

etching with an exponential dependence on the next nearest neighbours was thus 

adopted as a part of the standard kMC model. The next test was to take the new 

standard model and compare it with a model that included an inversely 

proportional dependence of the next nearest neighbour on the rate constant for 

CH3 adsorption. Finally, for completeness, the effect that the migration of surface 

ad-species had on the morphology of the diamond was tested by comparing 

simulations from the new standard kMC model with simulations in which the 

only difference was that the migration process was turned off.    

From the results presented in section 4.2, an argument can be made for the 

etching process causing a general surface roughening. The linear model produces 

a smoother less peaked surface than the other etching model for growth regimes 

where etching plays a significant role (MCD, NCD, and UNCD (HF)). This 

roughening effect, or lack thereof, can also be seen in SCD and UNCD (MW) 

where etching either has a very minor role or none at all in the case of the 

exponential model. For these two growth systems the surface roughness clearly 

decreases when there is little or no etching activity (Figure 40 (d) and Table 9). 

Evidence contributing to the hypothesis that etching enhances the smoothing of 

MCD, NCD, and UNCD (HF) growth can be found in Section 4.4.2. With 

migration turned off, the surface does not get significantly rougher. This means 

that migration is not a factor in the overall surface structure of the simulated 
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diamond, leaving only etching as the most important surface restructuring 

process in this case. 

The critical nucleus, the smallest configuration that can nucleate a new 

layer, was found to be the 2-block dimer in all cases except for SCD and UNCD 

(MW) growth when migration was turned off; in this case it was the monomer. 

This is the same size structure that was assumed to be the critical nucleus in the 

2-dimensional model. It is possible that the critical nucleus would be larger if 

there was a more accurate model for surface species (not ad-species) etching. 

Presently an activated surface site can etch at 0.02 % the rate of ad-species 

etching. The rate constant for surface species etching was changed to equal that 

of ad-species etching and produced no change to the critical nucleus of two test 

cases (not reported above). This gives greater confidence in the 2-block result. 
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  Chapter 5

Studies of methyl desorption from 
an H-terminated (2x1):{100} 

diamond surface 

In this chapter computational studies of desorption of a pendant methyl 

(CH3) from the {100} surface of CVD diamond are presented. The work in this 

chapter has been modified from a manuscript in preparation containing work 

carried out by the candidate together with collaborators. At appropriate points in 

the chapter below, work carried out by others is clearly identified. Some of this 

work has been published in Phil. Trans. Royal Society A. 1 

5.1. Introduction 

The growth of chemical vapour deposition (CVD) diamond is a competition 

between two complex sets of processes, the adsorption and incorporation of 

carbon into the growing lattice, and the removal of carbon on the surface back to 

the gas phase2–5. The mechanism by which an sp3 hybridised carbon bonded to 

the growing surface is lost to the gas phase medium above it is not fully 

understood. It has been shown6 that the etching of carbon species from the 

growing CVD diamond surface occurs in atmospheres of atomic H·. For example, 

it has been found that under CVD conditions using an H2 microwave plasma 

with CH4 present produces SCD diamond growth. However, when the CH4 

process gas is removed from the reaction with the SCD diamond in-situ, the 

etching of carbon is observed3. 
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The most obvious mechanism for etching is the spontaneous thermal 

dissociation of the Cd-CH3 bond. This has been suggested as a possible route to 

carbon loss from the growing surface, but recent computational studies suggest 

that the energy barrier of the reaction is too high to explain the experimentally 

observed rates. 7  Another proposed route to methyl loss would require a 

consideration of the non-equilibrium dynamics at the growing surface, which 

with the constant supply of excess energy is inherently out of equilibrium 

although in a steady state. The putative mechanism, shown in Figure 52, involves 

a ‘dangling’ surface radical CH2 to which an H atom combines. This exothermic 

reaction produces an energetically ‘hot’, with an excess amount of energy in the 

range of approximately 100 kcal mol-1, CH3 on the surface (Cd-CH3*). Within this 

hotspot it is possible for this excess energy to break the Cd-CH3* bond (Reaction 

R1a) before it has a chance to be dissipated through the bulk diamond. This 

mechanism has not been seriously considered previously due to diamond’s high 

thermal conductivity. However, it is the purpose of this study to look at the 

behaviour of these nascent ‘hotspots’ on time scales long before thermal 

equilibrium can occur. 

 

Figure 52-Reaction scheme showing non-equilibrium dissociation of a CH3 from the 
diamond surface due to the excess energy gained from the CH2· + H· reaction breaking 
the Cd-CH3 bond before it can dissipate through the diamond bulk.  

The aim of the work presented in this chapter is to look at both the non-

equilibrium dissociation of the CH3 group from the surface and the 

thermodynamics of the Cd-CH3 bond using an empirical valence bond (EVB) 

potential energy surface fitted to CASPT2 and CCSD(T) electronic structure 

theory.  

Cd-CH3* ⟶Cd· + CH3(g)·      (R1a) 

H

H

+   H H

H

H
*

H

H H
H H H
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Cd-CH3* ⟶Cd-CH3             (R1b) 

 

Figure 53-Molecular model used for all MD simulations, comprising 2090 atoms 
(C1498H592) 

5.2. Methods 

The general theory of molecular mechanics (MM), molecular dynamics 

(MD), and quantum mechanics (QM) was introduced in Chapter 2. All of the 

molecular mechanics calculations reported in this chapter were performed in a 

locally modified version of the CHARMM (Chemistry at HARvard 

Macromolecular Mechanics) software.8 All density functional theory results 

reported here were obtained using the Gaussian 09 suite of programs9 and the 

post-SCF and multireference calculations were done with the MOLPRO suite of 

software10,11.  

 In this section the more specific theory of the method used to create a 

reactive potential energy surface (PES) for molecular dynamics simulations is 

discussed. An analytic potential is fitted to accurate electronic structure data. The 

electronic structure calculations described here have been performed by 

Professor Jeremey Harvey. They are reported here due to the integral part they 

play in fitting an analytical reactive PES. Therefore, the basic theory for these 

calculations will only be discussed only briefly. 
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5.2.1. Analytical reactive potential energy surface 

Molecular mechanics typically approximate the potential energy arising 

from covalent bonding of atoms as a harmonic spring (Chapter 2). In this 

framework, there is no way to treat the breaking of covalent bonds on the 

potential surface in this harmonic approximation. There are methods that can 

create a reactive potential energy surface (PES) using force fields and electronic 

structure methods on the fly with ab initio molecular dynamics methods12. These 

methods take advantage of the computational efficiency of force field molecular 

mechanics but use ab initio electronic structure methods when it becomes 

necessary to treat the electron more accurately, e.g. during a chemical reaction. 

While being at the cutting edge of computational chemistry these methods are 

still computationally extremely expensive when long simulation periods are 

involved.  

This study has used the empirical valence bond (EVB) method13–15 to 

produce an analytical reactive PES. EVB is a subset of other analytical methods 

available to create reactive potentials, a review of these can be found in 

textbooks12 or in the literature15,16. The EVB method can create an approximate 

adiabatic surface from two or more different diabatic potential energy surfaces. 

This is described more explicitly in a generalisation of this approach by Truhlar 

et al as the Multiconfigurations molecular mechanics (MCMM) algorithm17. In 

the MCMM method, the analytical surface is fitted to accurate electronic 

structure data from a reaction scan (for example). The approach used in this 

work is similar to that used by Chang and Miller18 and is described briefly below. 

The coordinate dependent Hamiltonian is represented by an n × n matrix 

(Equation 1) where each of the diagonal elements, Vn(q), corresponds to the 

molecular mechanics energy that would be obtained for a particular bonding 

pattern of atoms (e.g. reactant- or product-like) at the structure considered. The 

parameters εi are offset values required to introduce the correct relative energy 

for equilibrium structures of the different molecular mechanics forcefields. 
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                                         𝐇(𝐪) = [
𝑉1(𝐪) + 𝜖1 … 𝐻1𝑛(𝐪)

⋮ ⋱ ⋮
𝐻𝑛1(𝐪) … 𝑉𝑛(𝐪) + 𝜖𝑛

] (1) 

  The off diagonal elements, Hij(q) , are the fitting functions and are in the 

form of a Gaussian function. The overall EVB energy is obtained as the lowest 

energy eigenvalue of the pseudo-Hamiltonian matrix. As solving (Equation 1) 

explicitly for a 2×2 matrix is part of results section 5.3.2 the discussion of a 

general solution is forgone in this section. For a general solution see Glowacki, 

Orr-Ewing, and Harvey above.  

5.2.2. Boxed molecular dynamics 

A recently developed method for accelerating rare events in molecular 

dynamics simulations19,20 was used to calculate the free energy profile for 

spontaneous thermal desorption of CH3 from the 2x1 {100} surface of diamond at 

temperatures found in a CVD reactor. This method is a generalised version of 

accelerated molecular dynamics called boxed molecular dynamics (BXD). In this 

method, a reaction coordinate ρ is divided into multiple boxes to which the 

molecular dynamics simulation is constrained. The relationship between the 

normalised probability distribution of the reaction coordinate and the Gibbs free 

energy of a system is described by Equation 2. A schematic diagram of the BXD 

procedure for a model reaction coordinate is shown in fig. 4. In this model 

system a trajectory is shown in box m. The MD system progresses as normal 

except for the monitoring of the atoms associated with the reaction coordinate. If 

at time t+dt any of these atoms exceed the constraint, then the simulation is 

reverted to time t. At this point only the atoms affecting the constrained 

coordinate are subjected to a velocity inversion procedure during which all 

conserved quantities of the equations of motion are preserved. 

𝑝(𝜌) =
exp (−

𝐺(𝜌)
𝑘𝑇

)

∫ exp (−
𝐺(𝜌)

𝑘𝑇
)𝑑𝜌

 

      (2) 
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Figure 54- Diagram of a BXD procedure for a simplified example reaction coordinate 
divided into m boxes. In this picture the trajectory exits box m after two inversions at the 
ρm-1 boundary. Rate constants ka,b are determined by the number of inversions at each 
boundary. (Schematic diagram adapted from references)19,20 

 In Figure 4 above the example trajectory is allowed to pass from box m to 

box m-1 after two velocity inversions against constraint ρm-1. This is similar for a 

real case; the reaction coordinate is constrained in a box for a certain simulation 

time until an arbitrary number of velocity inversions have occurred. However, 

unlike the toy example above, the simulation must reside in a particular 

constrained box until many velocity inversions occur. This is to ensure that the 

phase space of the reaction coordinate in question is statistically well sampled. 

Counting the number of inversion events with respect to the total residence time 

in each box allows a set of transition rate coefficients, ka,b, to be determined.  

Generalising from box m (Figure 54) bounded by ρm and ρm-1, the 

 transition rate coefficient from box m to m-1 is defined by Equation 2 where 

hm,m-1 is the number of velocity inversions on boundary ρm-1 and tm is the lifetime 

of the trajectory in box m.      

𝑘𝑚,𝑚−1 =
ℎ𝑚,𝑚−1

𝑡𝑚
 

 

            (3) 
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Going to the next box, m-1, we can calculate the transition rate coefficient from 

box m-1 back to box m or to box m-2 in the same manner (Equations 4 and 5). 

𝑘𝑚−1,𝑚 =
ℎ𝑚−1,𝑚

𝑡𝑚−1
 

            (4) 

𝑘𝑚−1,𝑚−2 =
ℎ𝑚−1,𝑚−2

𝑡𝑚−1
 

            (5) 

The equilibrium constant describing the equilibrium relative populations in two 

boxes n and n-1 can be defined as Equation 5 as long as temperature is defined. 

𝐾𝑛−1,𝑛 =
𝑘𝑛−1,𝑛

𝑘𝑛,𝑛−1
= exp (−

ΔG𝑛−1,𝑛

𝑘𝐵𝑇
) 

     (6) 

Thus the free energy of each discrete box is described and can be found by 

rearranging Equation 5 against some arbitrary reference value. And this free 

energy, the discrete probability of residing in box n is given by Equation 6. 

𝑝𝑛 =
1

∑ exp (−
Δ𝐺𝑛

𝑘𝑇
)𝑛

exp (−
Δ𝐺𝑛

𝑘𝑇
) 

        (7) 

A detailed derivation of the boxed molecular dynamics method can be found in 

the papers cited above and their supplementary information. 

5.3. Results 

5.3.1. Electronic structure calculations 

An important component of the study featured in this chapter is the 

calculation of an accurate potential energy curve for the bond dissociation 

reaction (R1a). The following ab-initio calculations were performed by Professor 

Jeremy Harvey. They are described here as they are an integral part of the 
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calculations reported in the rest of this chapter. The problem of producing the 

potential energy curve of reaction R1a is addressed by using a hierarchy of 

methods and models beginning with our most simplified model of the related 

dissociation of CH3 from neopentane (R2). A visualisation of the product and 

reactant for this reaction is shown in Figure 55.  

H3C-C(CH3)3⟶H3C· + C(CH3)3·     (R2) 

 

Figure 55-Molecular model of reaction R2, (a) shows the reactant neopentane and (b) 
shows the products, methyl + t-butyl 

The experimental values for the enthalpy of formation at 298 K for neopentane 

and the products of reaction R2 were obtained from the NIST web book21. The 

enthalpy of formation for neopentane, methyl, and t-butyl are -40.14±015, 34.821, 

and 11±0.7 kcal mol-1. These give an enthalpy for bond dissociation of 86.0±0.8 kcal 

mol-1. DFT calculations at the B3LYP/6-311G(d) level of theory, and ideal gas rigid 

rotor harmonic oscillator statistical mechanics, predict a bond dissociation energy at 

0 K which is 1.77 kcal mol-1 less than the dissociation enthalpy at 298 K. Thus the 

experimental value of the bond dissociation energy at 0 K is taken to be 84.2 kcal 

mol-1.  Bond energies were calculated with a number of methods at different levels 

of theory; these values (as well as for the (H3C)3CCH2-H bond) are shown in Table 16 

below. The best value for the C-C bond dissociation energy was calculated at the 

CCSD(T)-F12 level of theory, this was 85.4 kcal mol-1 and in good agreement with 

the experimental value. 
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Table 16-Calculated neopentane C-C(and C-H) bond dissociation energy, BDE, (kcal mol-1) 

 Relaxed geometries 
a
 

Rigid 

geometries
 b
 

Relaxed
 a
 

 
c 
BDE0(C–C) 

d 
BDE(C–C) 

c 
BDE(C–C) 

d 
BDE(C–H)

 

B3LYP/6-311g* 84.5 76.1 102.4 98.0 

B3LYP-D3/6-311G* 88.4 80.1 N/A 98.7 

MP2-F12/aug-cc-pVTZ 
f
 99.0 90.6 116.7 100.5 

CCSD-F12/aug-cc-pVTZ
 f
 90.7 82.4 108.0 99.6 

CCSD(T)-F12/aug-cc-pVTZ
 f
 93.7 85.4 110.7 100.5 

CASSCF/cc-pVTZ 75.7
 e
 67.3

 e
 91.0 

e
 N/A 

CASPT2/cc-pVTZ 90.3
 e
 82.0

 e
 108.1 

e
 N/A 

a Energies obtained using the indicated method at the structures optimized with B3LYP. b Energies obtained using the 
indicated method, and with fragment structures corresponding to those predicted with B3LYP for the neopentane 
minimum using CASPT2 rigid scan geometries at fragment separtation of 10 Ǻ. c Energies do not include zero point 
energy corrections. d Energies include B3LYP/6-311g* zero-point energy corrections of -8.3 kcal mol-1. e Dissociation 
limiting energies calculated for the supermolecule with rc-c = 10 Ǻ. f The normal cc-pVTZ basis set was used on hydrogen. 

A set of scans along the C-C dissociation coordinate (Figure 56) were also 

calculated as well as the single point energy calculations shown above. The use 

of multireference methods was required for an accurate treatment of the 

wavefunction along the reaction coordinate as neopentane dissociation results in 

a singlet diradical at long separations. Our approach was to carry out both 

CASSCF(2,2)/cc-pVTZ and CASPT2(2,2)/cc-pVTZ energy calculations in which 

the 2 electron, 2 orbital active space was chosen to correspond to the singly 

occupied p orbital localized on each carbon during dissociation. Figure 56a 

shows CASPT2 and CASSCF results obtained at structures derived from relaxed 

B3LYP/6-311G(d) scans along the C–C reaction coordinate constrained to a C3v 

symmetry, and Table 1 shows the CASSCF and CASPT2 results at infinite 

separations (taken at rCC = 10 Å), using the B3LYP optimized geometries. Note 

that the B3LYP calculations involved careful testing for a broken-symmetry 

unrestricted solution at each bond length, with the closed-shell solution found to 

be more stable until rCC = 2.4 Å. The expectation value for the S2 operator for the 

Kohn-Sham orbitals then increases rapidly from 0.19 at rCC = 2.6 Å to 0.92 at rCC 

= 3.4 Å. It should also be noted that the CASSCF and CASPT2 curves show no 

barrier to dissociation in excess of the endothermicity. 

Encouragingly, the zero point-corrected CASPT2 bond dissociation energy 

of 82.0 kcal mol-1 is in excellent agreement with both experiment and the 
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CCSD(T)-F12 bond dissociation energy. Figure 1b is the same as Figure 56a, with 

the only difference being that the results shown have been obtained using rigid 

C3V CASSCF and CASPT2 scans along the C–C dissociation coordinate of 

neopentane, where the starting structure was the optimized B3LYP structure for 

neopentane. At large separations, the energies shown in Fig 1b are larger than 

those shown in Fig 1a, as the forming methyl and t-butyl radicals are now not 

allowed to relax to their optimum structure. For example, the CASPT2 rigid scan 

bond dissociation energy (taken as the potential energy for rCC = 10 Å) is 108.1 

kcal mol-1, which is 17.8 kcal mol-1 larger than the energy obtained using B3LYP 

optimized geometries (i.e., a relaxed scan). Table 1 shows that the BDEs 

computed without fragment relaxation are all ca. 18 kcal mol–1 greater than the 

relaxed bond energies. 

 

Figure 56-Electronic structure scans along the neopentane CH3 dissociation reaction 
coordinate. 

As discussed below, the neopentane dissociation data in Table 1 and Figure 

1 were used to fit an analytical potential energy surface model to accurately 

represent (R2a); however, in order to understand whether the total system size 

had an impact on the calculated CC dissociation energy, we performed 

additional calculations using a series of incrementally larger diamond proxy 

models, the sequence of which is shown in Figure 57. C–CH3 and H2C–H bond 
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dissociation energies were calculated for each of these, using the B3LYP-D3 level 

of theory, and these are shown in Table 2.  

 

Figure 57-progressively larger cluster models used to in the DFT calculations presented 
in the table below. 

Table 17: Bond dissociation energies, BDE, (kcal mol-1) obtained for the diamond proxy 
models shown in Figure 57, at the B3LYP/6-311G(d) and B3LYP-D3/6-311G(d) levels of 
theory, at the B3LYP/6-31G(d) optimized structures, and including B3LYP/6-31G(d) 
zero-point energy correction 

 B3LYP  B3LYP-D3  

 BDE(C–C)  BDE(C–H) BDE(C–C)  BDE(C–H) 

Model A 87.1 96.4 90.8 97.1 

Model B 77.1 90.5 82.4 91.1 

Model C 73.6 90.8 81.3 91.8 

As can be seen in Table 16, the smaller model A leads to an overestimate of 

the C–CH3 and –CH2–H bond dissociation energies at the diamond [100] surface, 

due to the lack of steric hindrance from the environment. Models B and 

especially C should be close to the surface limit in this respect, and the calculated 

B3LYP-D3 bond energies appear to be reasonably well converged with respect to 

system size. Note that the B3LYP bond energies are smaller, especially for 

BDE(C–C), due to the neglect of the attractive dispersive interactions between the 
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methyl radical and the surface. The same effect can be seen for the C–C bond 

energy in neopentane in Table 16. It can also be seen there that the B3LYP-D3 

bond energy is smaller than experiment and than the CCSD(T)-F12 values, which 

agree well. Assuming that a similar underestimate occurs at the diamond [100] 

surface, the best estimates of the surface BDE(C–C) and BDE(C–H), based on the 

model C B3LYP-D3 value, and the difference between the B3LYP-D3 and 

CCSD(T)-F12 values for neopentane, are respectively of 86.6 and 93.6 kcal/mol. 

5.3.2. Fitting the EVB potential  

 As the intent of this study was to investigate the non-equilibrium kinetic 

behaviour of the reaction in Figure 52, it was necessary to probe the dynamics of 

this reaction. Studying reactions on the diamond surface with a realistic model 

would be computationally intractable using ab-initio methods such as direct 

dynamics. Hybrid methods such as combined quantum mechanical and 

molecular mechanical (QM/MM) approaches can be used for optimizations and 

energy calculations7,22–25 but are likewise computationally too demanding for 

carrying out dynamical studies. We have chosen to use an empirical valence 

bond (EVB) approach similar to the method developed by Warshel and Weiss.13 

The method was implemented in a locally modified version of the CHARMM 

molecular dynamics software,8 and is described in detail elsewhere.15  

 The potential was obtained in an analytical form which was fitted to a 

modified version of the CASPT2 electronic structure theory results described 

above. The CASPT2 method returns a relative energy at large C-C distance that is 

slightly smaller than the best estimate of the bond energy, as shown in Table 16. 

Also, the CASPT2 energies along the dissociation curve cannot readily be 

corrected for zero-point energy. Accordingly, the CASPT2 energies (relative to 

that obtained at the neopentane minimum) computed for a set of n C–C distances 

ri were scaled by a factor f = D0(CCSD(T))/De(CASPT2), where D0(CCSD(T)) is 

85.4 kcal mol–1, the zero-point energy-corrected bond energy computed using 

CCSD(T)-F12, and De(CASPT2) is 90.3 kcal mol–1, the bond energy calculated 
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using CASPT2 without zero-point correction. This yields a set of relative energies 

ΔEab initio(ri), which is shown below in Table 18. 

Table 18-CCSD(T) corrected CASPT2 scan energies for the C—C bond in H3C—
C(CH3)3 

rc-c Energy / kcal mol-1 

1.4 5.36 

1.5 0.16 

1.6 1.27 

1.7 6.01 

1.8 12.82 

1.9 20.52 

2.0 28.42 

2.1 36.09 

2.2 43.26 

2.3 49.78 

2.4 55.60 

2.5 60.72 

2.6 65.06 

2.7 68.74 

2.8 71.82 

2.9 74.37 

3.0 76.46 

3.1 78.15 

3.2 79.52 

3.3 80.62 

3.4 81.50 

3.5 82.22 

3.6 82.79 

The analytical form of the potential energy for a given set of nuclear 

coordinates was obtained as the lowest eigenvalue 0 of a pseudo-Hamiltonian 

matrix (equation (2)). The diagonal elements of this matrix are obtained from the 
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Merck molecular mechanics force field (MMFF94)26 V(q) using appropriate 

bonding terms for the bound and unbound states. 
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The diagonal elements Vj(q) are molecular mechanics energies obtained at a 

given structure using the product and reactant connectivities and forcefields. The 

role of the energy offsets j (which do not depend on q) is to correctly describe 

the electronic energy difference between reactant and product states. In the case 

that the respective coupling elements, H12(q=P) and H12(q=R), are close to zero 

near the product and reactant geometries, then the reaction energy is (V2(q=P) + 

2) – (V1(q=R) + 1).  Off diagonal elements H12(q) are represented by a linear 

combination of N Gaussian functions of the C–C atom-atom distance r for the 

breaking bond, of the form  


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







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kkk CBrArH
1

2
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where Ak, Bk, and Ck are the respective amplitude, center, and width parameters 

for a particular Gaussian function. In the present case, the potential was fit to the 

electronic structure data mentioned earlier using a combination of two Gaussian 

functions for the off-diagonal term (i.e. N = 2 in eq. (9)). The fit was chosen to 

minimize the least squares metric of equation 10: 

 
2

0

2 ))(()()1;,,(  
i

iabinitioikkk rErNkCBA     (10) 

In this expression, λ0(ri) is the optimized value of the lowest eigenvalue of the 

matrix of eq. (1), with the C–C distance r constrained to the appropriate value ri, 

but with all other structural parameters optimized. The value of the offset ε1 was 

chosen such that V1 + ε1 is equal to zero at the minimum of the potential energy 

curve. The offset ε1 was chosen such that V2 + ε2 is equal to the ab initio 

dissociation energy at large r. 
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Table 19-Optimized parameters for the Gaussian functions making up H 12 in Eq. (3) 

Gaussian A (amplitude) B (center) C (width) 

1 38.35 2.32 0.27  

2 133.34 2.95 0.44  

 

The best fit parameters for each Gaussian are shown in Table 19 above. All 

of the functions involved in the fitting procedure are shown in Figure 58. The 

value of H12(q) is close to zero at 1.54 Å and beyond 4.5 Å so that the potential is 

described by V1(q) and V2(q) in the reactant and product regions.  

 

 

Figure 58-MMFF94 energies for the reactant (V1(q)-bonded state) and product  (V2(q)-
dissociated state) geometries with the off diagonal Gaussian functions with the 
parameters from Table 19. 
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A plot of the fitted λ0 and ΔEab initio (Table 18) as a function of rc-c is shown in 

Figure 59a. The values of λ0 are obtained by performing a relaxed MM scan using 

the EVB potential described by the parameters in Table 19 and the text above at 

the same values of rc-c as there are points of data in ΔEab initio.   

 

Figure 59- Final EVB fit for neopentane compared with the CASPT2 scaled CCSD(T) 
scan data (a) alongside a relaxed EVB scan of methyl dissociation for the diamond surface 
using a modified set of EVB parameters obtained from the fit with neopentane (b)  

Due to the difficulty of calculating ab initio values for the potential energy 

curve for CH3 dissociation from a large diamond surface (Figure 53), the EVB 

potential for the diamond model was generated directly from that fitted to ab 

initio data in the case of neopentane as shown in Figure 59a. The H12 function 

was used completely unmodified. The offset parameters ε1 and ε2 were chosen, as 

with neopentane, so that V1 + ε1 is equal to zero and V2 + ε2 equal the dissociation 

energy of diamond at large r. A relaxed EVB scan of the C-C reaction coordinate 

for the diamond model is shown in Figure 59b. This potential has an asymptotic 

value of λ0 for large r of ca. 75.4 kcal mol–1, somewhat smaller than the ab initio 

calculations in Table 17. A relaxed scan of a methyl dissociation from the 

diamond surface using the EVB potential just discussed is shown in Figure 59b. 
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5.3.3. Non-equilibrium dynamics 

 The following MD simulations were performed to investigate the non-

equilibrium behaviour of the reaction shown in Figure 52. The presence of a 

locally ‘hot’ methyl surface species as a result of this reaction needed to be 

accurately represented in order to capture correct dynamics of the system. In 

order to do this, a certain amount of kinetic energy was added to an H atom on 

the methyl in the direction of the H-C bond before the beginning of each NVE 

trajectory. This energy would then either propagate through the lattice 

equalising with the average temperature very rapidly due to the thermal 

properties of the diamond lattice, or the kinetic energy would break the Cd-CH3 

bond before the excess energy had time to dissipate. The former is the more 

thermodynamically expected result. 

 180,000 NVE trajectories were run to determine the fraction of prompt CH3 

dissociation versus non-reactive thermalisation events. In order to get this many 

unique trajectories at a thermally equilibrated temperature a long NVT trajectory 

was run for 1.2 µs with a time step of 1 fs. A Langevin thermostat was used to 

maintain a temperature of 1300 K, with a friction coefficient of 10 s-1 and a heat 

bath of 1300 K. This is the temperature at which Carbon etching is observed 

experimentally under CVD growth conditions. A snapshot of geometries and 

velocities was taken at every 10 ps in the NVT simulation. These were used as 

initial conditions for the NVE trajectories, with the added kinetic ‘kick’ referred 

to above. The 10ps spacing is sufficient to prevent the starting point of each NVE 

trajectories from being correlated with the previous and following ones. Each of 

these simulations was then run for a total time of 10 ps with a 1 fs time step.  

 The kinetic ‘kick’ added to the simulations initial conditions was varied to 

assess the sensitivity of the model. The 180,000 NVE trajectories were divided 

evenly between 100, 120, and 140 kcal mol-1 ‘kicks’. The fraction of prompt 

dissociation of CH3 from the surface versus non-reactive events is shown in Table 

20 below.  As expected, the proportion of CH3 prompt dissociation increases with 

the initial kinetic energy in the local hotspot at the beginning of the simulation. 
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However, the model does not appear to be highly sensitive to this increase. 

Therefore any error in the estimated energy of the C-H bond (Table 17) formation 

in scheme 1 should not unduly affect the estimation of the rate of CH3 loss. 

Table 20 – The fraction of prompt CH3 dissociation from the surface at three different 
levels of initial kinetic energy in an H atom in the surface methyl. A Poisson distribution 
of rare events (N) was assumed and the error is proportional to √N.  

 

Energy 
/kcal mol-1 

Fraction prompt CH3 
dissociation 

100 0.018 ± 0.006% 

120 0.065 ± 0.010% 

140 0.090 ± 0.016% 

 It can clearly be inferred from table 1 that prompt dissociation is an 

extremely rare event and that most of the trajectories were non-reactive with the 

CH3 remaining bonded to the surface. Figure 60 shows the Cd-CH3 bond 

separation over the course of one such simulation. It demonstrates that this value 

fluctuates around an equilibrium bond length of 1.564 Ǻ remaining bonded to 

the surface for the entire length of the 10 ps simulation. This is a relatively long 

length of time and is much greater than the time that it takes for the excess initial 

energy to diffuse into the bulk lattice. 
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Figure 60- Typical non-reactive trajectory. The majority of simulations produced no 
dissociation event. The extra energy from the locally ‘hot’ methyl is dissipated through 
the diamond lattice without breaking the Cd-CH3 bond. 

 The time it takes for this excess initial energy to diffuse into the bulk 

diamond is shown below in Figure 61. This figure shows the kinetic energy in the 

C-H bond which has been ‘kicked’ as a function of time. This illustrates the rate 

at which energy diffuses from the locally hot region to the bulk. Most of the 

energy has left the region of the C-H bond by approximately 0.25ps and by 1ps 

this region is in thermal equilibrium with the rest of the bulk diamond. 
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Figure 61 – Excess kinetic energy in the locally hot region of the ‘kicked’ C-H bond 
quickly dissipates to the bulk. (a) and (b) are the same trajectory on different time scales. 
At 1300 K 3 kcal mol-1 of kinetic energy would be expected and this is what is seen after 
the excess energy has dissipated in (b). 

 For those trajectories that did produce a dissociation event, this process 

occurred rapidly. Figure 62 shows a reactive trajectory with a prompt breaking of 

the Cd-CH3 bond at approximately 250 fs into the simulations. When this is 

compared with the time evolution of the kinetic energy in the C-H bond (Figure 

61 above) it can be seen that the breaking of the Cd-CH3 bond occurs as the extra 

kinetic energy is just leaving the C-H bond and diffusing from the surface methyl 

to the diamond. All of the prompt dissociations occurred on the same time scale 

(~250 fs), which is 40 times quicker than the total time of the non-reactive 

trajectory in Figure 60. In the reactive case shown in Figure 62 the diffusion of 

energy did not carry on dissipating though the bulk of the diamond, but it was 

sufficient to break the bond holding the CH3 to the surface before thermal 

equilibrium had been reached. 
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Figure 62 - Plot of the Cd-CH3 reaction coordinate for a reactive NVE trajectory. The 
methyl breaks away from the surface at approximately 0.25ps. This is well before the 
energy can dissipate through the lattice. 

 

 The rate of CH3 loss from the 2x1:{100} surface can be determined from the 

calculations discussed above. First we must estimate the rate of reaction for the 

H∗(g) addition step in scheme 1 (R1): 

𝐶𝑑 − CH2
∗ + H∗(g) → Cd − CH3     (R2) 

In average CVD conditions for MCD growth, the rate of adatom deactivation in 

the kMC model is approximately 9000 s-1. At the highest estimate for non-

equilibrium dissociation, the percent prompt dissociation was 0.1%. This would 

give a CH3 loss rate for MCD diamond growth conditions as 9 s-1. While this is 

not insignificant it is relatively slow. 

5.3.4. Box molecular dynamics 

Boxed molecular dynamics simulations were used in order to obtain the 

thermal potential of mean force (and thus the free energy profile19) of the 

dissociation reaction coordinate of CH3 from the surface. By calculating the free 
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energy profile of this reaction for many temperatures it will then be possible to 

estimate a temperature-dependent free energy of activation. Using this and 

transition state theory the kinetic rate of thermal desorption can be determined. 

In the following section, a detailed description of the BXD procedure at 700K is 

given. In this work free energy profiles at 700K, 800K, 900K, 1000K, 1100K, 

1200K, and 1300K are calculated. This is the temperature range of interest in the 

CVD diamond growth process.  The procedure for doing this is practically the 

same at all of these temperatures. Therefore, the detailed method is only shown 

for one here. 

In this work the reaction coordinate of Cd-CH3 bond is divided into 13 

boxes with varying size. It was not necessary to change the box number or sizes 

for any of the different temperatures to achieve convergence; this can sometimes 

be the case with this method. The box boundaries were on the following points 

on the reaction coordinate: 1.4 Å, 1.5 Ǻ, 1.6 Ǻ, 1.7 Ǻ, 1.8 Ǻ, 1.9 Ǻ, 2.0 Ǻ, 2.2 Ǻ, 2.4 

Ǻ, 2.6 Ǻ, 2.8 Ǻ, 3.0 Ǻ, 3.3 Ǻ, and 4.0 Ǻ. From this list it can be seen that the boxes 

are not evenly spaced. The boxes must be more tightly constrained in the middle 

section of the reaction coordinate as the gradient of the PMF is steeper along that 

portion.  

The BXD simulation procedure was applied using a series of NVT 

trajectories for each temperature. As the technical details of this process are 

exactly the same except for a change in temperature only the full BXD procedure 

for 700 K is discussed in this section as any more would be redundant. One NVT 

trajectory was run for each box as the length of the total simulation required to 

achieve a highly accurate sampling of all of the phase space was long. Each box 

was run with a time step of 0.25 fs for a total time of 187.5 ps, using a Langevin 

thermostat with a friction coefficient of 25 s-1 and a heat bath of 700 K. The only 

difference in each of these trajectories is the size and position of the constrained 

coordinate for the BXD procedure in CHARMM (box boundaries previous 

paragraph). This meant that each box could be run in parallel dramatically 

cutting down on the real time computational cost. The reaction coordinate was 
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constrained by implementing the velocity inversion routine described in section 

1.2.2. 

 

Figure 63-Close up of a BXD box where the Cd-CH3 coordinate is constrained between 
1.6 and 1.7 Å; necessary elements of a successful BXD run are a small enough time step 
to ensure accurate dynamics but more importantly the box size must be such that a 
boundary crossing occurs frequently enough to produce good statistics.  

An output of the Cd-CH3 distance is printed every 10 time-steps and saved 

for each box. If the coordinate reaches a boundary then the time step and 

boundary is recoded in this file as well. After the individual box trajectories are 

completed, they are stitched together to form one long file of the Cd-CH3 

coordinate over time with the frequency of velocity inversion events (Figure 64). 

This data is then used to calculate the PMF/free energy profile along the reaction 

coordinate. 
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Figure 64-This figure shows the total BXD simulation for 700 K. Each box was run in 
parallel, as 109 µs is a relatively long simulation, and stitched together for post 
processing to calculate the PMF.    

A trajectory similar to the one described above was simulated for each 

temperature in question. The residence time in each box and the forward and 

reverse transition rate coefficient for each box was calculated from these 

trajectories. Using this data and Equation 6 in section 5.2.2, ΔGn for each box 

between 1.4Ǻ and 4.0Ǻ was calculated at each temperature. The free energy 

curves generated from these calculations are shown in the figure below.   
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Figure 65- BXD results: free energy curves (in RT units) for simulations at 700, 800, 
900, 1000, 1100, 1200, and 1300 K 

These results clearly illustrate a decrease in the free energy of dissociation as is 

expected. There is a barrier to dissociation visible in each curve as the energy 

decreases after a maximum to an asymptotic value. This is due to an entropic 

gain for the methyl just after the breaking of the C—C bond. 

 From these free energy profiles it was a simple matter to calculate the rate 

constant to dissociation. The energy at the equilibrium geometry is normalised to 

zero for each temperature in Figure 65 so the Gibbs free energy of activation is 

the barrier height. The rate constant for desorption was then calculated using 

transition state theory and the Eyring equation (Equation 2.5). The temperature 

of the simulation, the free energy barrier, and the calculated rate constant are all 

listed in Table 21 below.  
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Table 21- Gibbs free energy of activation determined from the results presented in Figure 
65 above and the resulting rate constant for each temperature determined by the Eyring 
equation (Equation X.x) 

Temperature / K Gibbs free energy / RT Rate constant / s-1 

700 27.84 11.84 

800 24.42 413.89 

900 21.28 10751.34 

1000 18.72 154880.50 

1100 16.86 1095698 

1200 14.88 8605722 

1300 13.55 35157806 

The rate constant for each temperature was then plotted on an Eyring plot to 

determine the apparent enthalpy of activation, ΔH‡, for the reaction as calculated 

by the BXD simulations. This plot is shown below in Figure 66. Using Equation 

11 (the linear Eyring equation) the fit gives the enthalpy of activation, ΔH‡, and 

the entropy of activation, ΔS‡, for the thermal dissociation of methyl.    

ln
𝑘

𝑇
=

−𝛥𝐻‡

𝑅
∙

1

𝑇
+ ln

𝑘𝐵

ℎ
+

𝛥𝑆‡

𝑅
 

      (10) 

ΔH‡ = 182 kJ mol-1 

ΔS‡ = 26.7 J mol-1 
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Figure 66-Eyring plot of rate constants from Table 21 

5.3.5. Long simulation – Time correlation 

 Next we executed a long NVE trajectory using the EVB potential in order to 

obtain information about the energy transfer within the diamond lattice based on 

fluctuation-dissipation theory. A starting position and velocity configuration was 

taken from one of the previous NVE simulations that had produced a reactive 

event.  This NVE trajectory was run just in every way as the previous one, but 

without the initial kinetic “kick”. This simulation was run for 1 ns in total with a 

time step of 1 fs. The velocities were saved at each time step so that the kinetic 

energy of each atom as a time dependent function could be calculated. This 

kinetic energy was used to determine the time correlation of energy (equation 4) 

for two different subsets of atoms around the surface carbon atom where the 

pendant methyl was attached. The correlation functions produced provide 

information on the rate of energy transfer between the reactive subset and the 

diamond bulk. 

𝐶(𝑡) = 〈𝛿𝐸(0)𝛿𝐸(𝑡)〉 = 〈𝐸(0)𝐸(𝑡)〉 − 〈𝐸〉2     (4) 
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 Specifically, for some initial non-equilibrium condition, e.g. corresponding 

to C-H bond formation at the surface leading to a ‘hot’ methyl group containing 

ΔE’(0) of initial energy in excess of thermal energy, the excess energy at a later 

time τ, ΔE’(τ),should vary as shown in Eq. (5): 27 

∆𝐸′(𝜏) = ∆𝐸′(0)
𝐶(𝜏)

𝐶(0)
               (5) 

 

The time correlation functions for the energy dissipation have been calculated for 

two different-sized systems around the surface-bound methyl group, a subset of 

16 and 34 atoms respectively of the full system. These functions have then been 

used to compute the expected excess energy to be found in each sub-system 

assuming that an initial non-equilibrium condition leads to an initial excess 

amount of energy of 450 kJ mol-1 (108 kcal mol-1). The resulting predicted time 

evolution of the excess energy is shown in Figure 67. As the energy dissipates 

through the bulk the energy equalises to the thermal energy of the subset. Both 

energy dissipation curves are plotted together to show that there is no 

fundamental difference in the rate of energy diffusion.  The energy for both has 

practically approached the thermal energy of the subset by ~250 fs. This agrees 

qualitatively with the assessment of the energy loss in the C—H bond in Figure 

61. The energy dissipation through the bulk is so quick that the rate is similar for 

the C—H bond by itself, and the 16 and 34 atom subset around the thermally hot 

CH3 on the surface. Note that the energy of the system has been estimated simply 

by taking the kinetic energy of the atoms within the considered sub-system. The 

neglect of the potential energy terms presumably accounts for the high-frequency 

(and physically unrealistic) component of the predicted energy decay. 
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Figure 67-Excess energy decay function for two subsets of atoms around the locally hot 
methyl on the (100) diamond surface (Figure 53 (a))  

5.4. Conclusions  

The growth of CVD diamond is a competition between adsorption and 

etching. Although it has been observed experimentally, 6 the general mechanism 

by which it occurs is not well understood and debated in the literature. 4,5,28,29 It 

was proposed in this work that the desorption of a CH3 adsorbate is a step to 

carbon loss from the surface. Two routes to methyl loss from the (100):(2×1):H 

diamond surface were investigated in the work presented above; a non-

equilibrium route (breaking of the C-C bond before the dissipation of energy into 

the bulk from reaction shown in Figure 52) and a thermal decomposition. 

An analytical reactive potential energy surface of the dissociation of H3C-

C(CH3)3 (neopentane) was created from a CCSD(T) corrected CASPT2 scan along 

the dissociation reaction coordinate using the EVB method.  This potential was 
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then transferred for use on a diamond surface with only slight modification. The 

energy surface was used in molecular dynamics trajectories simulating CH3 

dissociation. 

The non-equilibrium dissociation of methyl was investigated by running 

160,000 non-correlated NVE trajectories. Each trajectory had an additional 108-

148 kcal mol-1 of initial energy to replicate the locally energetic region just after 

the  H· + CH2· recombination.  The energy quickly dissipated through the bulk 

within 250 fs of the simulation for an overwhelming majority of the trajectories, as 

would be expected. However, a small percentage of dissociative events did occur.  

The percentage of prompt CH3 dissociation was 0.18%, 0.65%, and 0.9% with a 

108, 128, 148 kcal mol-1 ‘kick’ of excess initial energy. 

Boxed molecular dynamics calculations were implemented at 700, 800, 900, 

1000, 1100, 1200, and 1300 K using the EVB potential. Free energy profiles for 

CH3 dissociation at each of these temperatures were generated and the Gibbs free 

energy of the reaction at each temperature was determined by their barrier 

heights. Rate constants for each temperature were calculated using the Eyring 

equation and an Eyring plot was used to determine the enthalpy and entropy of 

activation for the reaction as ΔH‡ = 182 kJ mol-1 and ΔS‡ = 26.7 J mol-1. At 1100 K 

this gives a thermal rate of decomposition for CH3 of 1.61×105 s-1, which is much 

faster than the non-equilibrium rate of dissociation which was 9 s-1. 
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  Chapter 6

Summary 

6.1. Conclusions 

The growth of diamond by chemical vapour deposition is a mature 

technical process but many new variants are being developed, some of which 

were discussed in the introduction. However, the complete theoretical picture of 

the physical and chemical processes involved in this growth is incomplete. The 

work presented here was intended to link the atomistic theory of diamond 

growth with macroscopic observables.  

In this thesis, work concerning the multi-scale computational modelling of 

diamond grown by the chemical vapour deposition (CVD) method has been 

presented. The development and systematic testing of a 3-dimensional kinetic 

Monte Carlo (kMC) model of the chemical vapour deposition of diamond 

growing on the (100) surface was discussed. This novel kMC simulation 

program, written in Fortran 90 (Appendix), was used to probe how atomistic 

processes such as the etching of CH3 from the surface, the adsorption of CH3 

onto the surface, and the migration of CH2 ad-species across the surface affect the 

surface morphology of the resulting simulated diamond. Finally a reactive 

analytical potential energy surface for the dissociation of CH3 from the 

(100):(2×1):H surface was developed. Molecular dynamics simulations were used 

to probe the rates of non-equilibrium dissociation as well as the thermal 

decomposition of CH3.   

A systematic exploration of the parameter space of the 3-D kMC model was 

conducted in order to verify the sensitivity of the output of the program to 

changes in the model input parameters obtained from experiments and 
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theoretical calculations. The parameter that most affected the model was found 

to be the concentration of CH3 near the surface. This influences the rate of 

adsorption and accordingly the growth rate and surface roughness. An accurate 

knowledge of the concentrations of gases above the surface must be known in 

order to have reliable output from the kMC model. In this model the data 

regarding the concentrations of gases is based on extensive theoretical modelling 

from the Bristol-Moscow collaboration. 1 

The validation of the model also yielded the following results. The growth 

rate was found to increase with the temperature of the substrate, peak at 1000 °C 

and then begin to decrease. This phenomenon has been observed in experiments; 

growth on the (100) increased and then peaks with a subsequent decrease as 

temperature increases. 2 Our kMC model is the first to theoretically reproduce 

this, though others have reproduced this trend on the (110) surface. 3 As the rate 

for deactivation was decreased the model produced smoother diamond at a 

much reduced growth rate which has also been observed experimentally. 4  

Three different models for the etching of an activated ad-species were 

tested in the kMC model. The original model5,6 of etching was a rate constant 

based on a fraction of the CH3 adsorption rate as it was found in experiments 

that the rate of carbon loss when the process gasses were turned off was 10% of 

the rate of adsorption with the gas on. The next model was a rate constant based 

on the Eyring equation with a linear dependence on the next nearest neighbour 

(NN). The third model was an Eyring equation with a dependence on the next 

nearest neighbour in the exponential function. Qualitatively the Eyring model 

with the exponential NN dependence produced rougher surfaces and the Eyring 

model with linear NN dependency produced smoother surfaces. The exponential 

model is the more theoretically justifiable model, as the bonding in nearest 

neighbours does not decrease linearly. As a carbon in the diamond lattice 

becomes more bonded, towards its tetrahedral structure, it becomes harder to 

remove (less energetically favourable). 

The rate of CH3 adsorption was also changed to include a linear 

dependence on the configuration of the nearest neighbours of the adsorbing site. 
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It was found that this change had a more substantial effect than any of the other 

changes made to the etching models. This change produced surfaces with a 

greatly increased surface roughness value. Also these surfaces had very well 

defined facets that qualitatively resemble crystallite formation found in actual 

CVD growth. In the case of the UNCD (HF) simulation these facets were 

approximately 2 nm in size which is close to the 5 nm crystal size observed under 

similar growth conditions. 7 

The critical nucleus, the smallest unetchable configuration that can nucleate 

a new layer, was found to be the 2-block dimer in all cases except for SCD and 

UNCD (MW) growth when migration was turned off; in this case it was the 

monomer. This is the same size structure that was assumed to be the critical 

nucleus in the 2-dimensional model.  

The growth of CVD diamond is a competition between adsorption and 

etching. Although it has been observed experimentally, 8 the general mechanism 

by which etching occurs is not well understood and debated in the literature. 6,9–

11 It was proposed in this work that the desorption of a CH3 adsorbate is a step to 

carbon loss from the surface. Two routes to methyl loss from the (100):(2×1):H 

diamond surface were investigated in the work presented above; a non-

equilibrium route and a thermal decomposition. 

An analytical reactive potential energy surface of the dissociation of H3C-

C(CH3)3 (neopentane) was created from a CCSD(T) corrected CASPT2 scan along 

the dissociation reaction coordinate using the EVB method.  This potential was 

then transferred for use on a diamond surface with only slight modification. The 

energy surface was used in molecular dynamics trajectories simulating CH3 

dissociation. 

The non-equilibrium dissociation of methyl was investigated by running 

160,000 non-correlated NVE trajectories. Each trajectory had an additional 108-

148 kcal mol-1 of initial energy to replicate the locally energetic region just after 

and H· + CH2· recombination.  The energy quickly dissipated through the bulk 

within 250 fs of the simulation for an overwhelming majority of the trajectories, 
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as would be expected. However, a small percentage of dissociative events did 

occur.  The percentage of prompt CH3 dissociation was 0.18%, 0.65%, and 0.9% 

with a 108, 128, 148 kcal mol-1 ‘kick’ of excess initial energy. 

Boxed molecular dynamics calculations were implemented at 700, 800, 900, 

1000, 1100, 1200, and 1300 K using the EVB potential. Free energy profiles for 

CH3 dissociation at each of these temperatures were generated and the Gibbs free 

energy of the reaction at each temperature was determined by their barrier 

heights. Rate constants for each temperature were calculated using the Eyring 

equation and an Eyring plot was used to determine the enthalpy and entropy of 

activation for the reaction as ΔH‡ = 182 kJ mol-1 and ΔS‡ = 26.7 J mol-1. At 1100 K 

this gives a thermal rate of decomposition for CH3 of 1.61×105 s-1, which is much 

faster than the non-equilibrium rate of dissociation. 

6.2. Further work 

One of the major drawbacks to the kMC model presented in this thesis is 

that it only used reactions that take place on the (100) surface and the diamond 

surface is reduced to a simple cubic structure. The simplification of the surface is 

appropriate when just simulating the (100) surface, but a true representation of 

the surface cannot be produced based only on simulation of one growing surface.  

It would be much more appropriate to have all known reactions on every surface 

in the rate catalogue. This could be done with the on-lattice approximation and a 

predefined rate catalogue but it would be more successful with off-lattice and 

self-learning methods that calculate rate constants on the fly. 12–14 The improved 

model would be better able to predict surface structure features. However, this 

would increase the complexity of the program considerably as well as 

introducing significant efficiency concerns. In fact a project this large could 

probably be split into a number of smaller projects. 

A less ambitious attempt to improve the current model would be to add 

surface reconstruction to the model of the (100) surface as it is currently not 

included. Theoretical studies of the inclusion of CH3 into the dimer bond by a 
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ring opening and closing mechanism have been conducted at Bristol. 15 The 

macroscopic effects of these mechanisms could be more easily tested in models 

which included a reconstructed surface. 

Smaller projects include the further study of the etching process. 

Theoretical studies of carbon being etched by more complicated mechanisms 

from more tightly bound configurations. The first of these could be the probing 

of the mechanism by which a carbon that is a part of 2×1 reconstruction could be 

lost to the gas phase. The energetics of such a reaction could then be used to 

estimate a rate constant for the process in the modified kMC (100) model with the 

surface reconstruction. Although for a more realistic simulation the full kMC 

model of all surface reactions should be developed. 
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APPENDIX 
A copy of the kinetic Monte Carlo program written in Fortran 90 which was developed 
during the course of the PhD project with the input.txt and energy.txt file with must be 
in the same directory as the executable. 
 
!---------------------------------------------------------------------------- 
!                      3-D kinetic Monte Carlo simulation 
!                  of growth of CVD diamond on the (100) surface 
!                    
!                  v2.0  
! 
!   Author - Jeff Rodgers 
!       Date   - 4 Oct 2013 
! 
!       main.f90 is the main program from which the simulation starts and ends 
! 
!       Description -   This program simulates the growth of CVD diamond on 
!                       The (100) surface. Many of the rate constant in the 
!                       Catalogue are modified from the simplified 2-D model 
!                       From the paper 'J. Appl. Phys. 108 (2010) 114909'. 
!                       New to this model is etching modelled as an activated 
!                       Process, with an exponential dependence on bonding to  
!                       Nearest neighbours  
! 
!------------------------------------------------------------------------------- 
 
 
program KMC 
 
use general_module  !Environment modules loaded 
use rates_module 
use surface_module 
 
implicit none 
 
real(kind=8) :: ratesum, ran1,ran2 
 
integer ::  i,j,k,cnt,chosen,prev_chosen,time_temp 
integer, allocatable, dimension(:,:) :: height_arr 
 
TotalTime = 0;chosen=0;dt = 0;lowest_num = 2;time_temp = 1 
 
open(unit=18,file="adatom.txt") !Open output streams to print what's 
    !going on during the program run! 
open(unit=9,file="test.out")    !test.out now deprecated 
open(unit=29,file="visual.out") 
open(unit=39,file="growth_vs_time.txt") 
open(unit=61,file="roughness_plot.txt") 
open(unit=20,file="main_output.txt") 
 
write (20,*) ,"-------------------------------------------------------------" 
call read_input_file() 
call read_energy_file() 
call paulsrates() 
call initialise_variables() 
write (20,*),"-------------------------------------------------------------" 
 
n = num_rts_per_site*grid_x*grid_y !max number of posible rates(6 per grid site) 
 
allocate(surface(3,grid_x,grid_y)); surface = 1 
allocate(rategrid(3,n )) 
allocate(reverserategrid(grid_x,grid_y )) 
allocate(rates(n)) 
allocate(rsv(n)) 
allocate(height_arr(grid_x,grid_y)) 
 
call initialise_rates() 
surface(1,:,:) = 0 
if (isRandom) CALL init_random_seed()  !Random seed can be turned on or off with 
boolean from input file 
 
!The main Monte Carlo loop begins here 
!This is where the magic happens! 
mcsteps = 1;cnt=1 
chosen = 1 
prev_chosen = 1 
 
rsv = 0                 !Rate Sum Vector(rsv), ordered sum of rates 
rsv(1) = rates(1) 
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do j = 2,n 
 rsv(j) = rsv(j-1)+rates(j) 
end do 
 
do while (TotalTime < endTime) 
 ratesum = sum(rates) 
        !Rate Sum Vector(rsv), ordered sum of rates 
 if (lowest_num .eq. 1) then 
  rsv(1) = rates(1) 
  lowest_num = 2 
 end if 
 do j = lowest_num,n 
  rsv(j) = rsv(j-1)+rates(j) 
 end do 
 call random_number(ran1) 
 ran2 = ran1 * ratesum 
 call locate(rsv, ran2, chosen, n) 
 lowest_num = 0 
 if (chosen > n) then 
  print *, "All of your rates are now zero" 
  goto 999 
 end if 
 x_do = rategrid(1,chosen); y_do = rategrid(2,chosen);ratetype = rategrid(3, chosen) 
 prev_chosen = chosen 
 
 call execute_rate(x_do,y_do,chosen) 
 call update_time(ran1, ratesum) 
 height_arr =  surface(1,:,:) 
 if (TotalTime .gt. (time_temp*output_Time_Step)) then 
  call stats(height_arr) 
  write(61,*) TotalTime,",",mcsteps,",",rmsdh,",",rms 
  write(39,*) TotalTime, (0.08917*0.001*aveheight*3600)/TotalTime 
  write(18,*) 
TotalTime,adatom_Adsorption_Count,etch_Count,surface_Activation_Count,surface_Deactivatio
n_Count,& 
adatom_Activation_Count,adatom_Deactivation_Count,surface_Migration_Count,beta_Count,doub
le_Activation_Count,& 
double_Deactivation_Count,triple_Activation_Count,triple_Deactivation_Count,CH2_Adsorptio
n_Count,CH_Adsorption_Count,& 
C_Adsorption_Count 
 
  time_temp = time_temp + 1 
 end if 
!  write(9,*) 
mcsteps,ratetype,TotalTime,adatom_Adsorption_Count,etch_Count,surface_Activation_Count,su
rface_Deactivation_Count,& 
!adatom_Activation_Count,adatom_Deactivation_Count,surface_Migration_Count,beta_Count,dou
ble_Activation_Count,& 
!double_Deactivation_Count,triple_Activation_Count,triple_Deactivation_Count,CH2_Adsorpti
on_Count,CH_Adsorption_Count,& 
!C_Adsorption_Count 
 
 mcsteps = mcsteps + 1 
 cnt = cnt + 1 
end do    !This is the end of one MC step 
999 print *, "End of Program" 
 
call write_output() 
 
!Deallocate all allocatable arrays 
deallocate(surface,rategrid,reverserategrid, rates, height_arr) 
!Close all output streams 
close(18);close(29);close(39);close(61);close(20);close(9) 
 
!An awk script is called to make visual.out look more appealing to movie.py 
 call system('awk -f vis.awk visual.out > tmp') 
 call system('mv tmp visual.out') 
 call system('mv visual.out visualise') 
 close(29) 
 
end program KMC 
 
 
!Awk script vis.awk 
!{ 
!print $1 "\t" $2 "\t" $3 "\t" $4 "\t" $5 "\t" $6 "\t" $7 "\t" $8 
!}



 
adatom_activation.f90 
!-------------------------------------------------------------------- 
!This subroutine executes an adatom activation process 
!Surface type is changed to 4 and new rate is set for x,y and chosen 
!-------------------------------------------------------------------- 
 
subroutine adatom_activation(x,y,chosen) 
use surface_module 
use rates_module 
implicit none 
 
integer, intent(in) :: x,y,chosen 
 
if(surface(2,x,y).ne. green .and. surface(2,x,y) .ne. red& 
 .and. surface(2,x,y) .ne. light_red) then 
  write(*,*) "what the deuce? Not a deactivated adatom!" 
 stop 
end if 
if (surface(2,x,y) .eq. green) then 
 surface(2,x,y) = red 
 adatom_Activation_Count = adatom_Activation_Count + 1 
else if (surface(2,x,y) .eq. red) then 
 surface(2,x,y) = light_red 
 double_Activation_Count = double_Activation_Count + 1 
else if (surface(2,x,y) .eq. light_red) then 
 surface(2,x,y) = yellow 
 triple_Activation_Count = triple_Activation_Count + 1 
else 
 write(*,*) "What the deuce man?" 
end if 
 
call set_new_rate(x,y, reverserategrid(x,y)) 
 
end subroutine adatom_activation 
 
 
adatom_deactivation.f90 
!-------------------------------------------------------------------- 
!This subroutine executes an adatom deactivation process 
!Surface type is changed to 3 and new rate is set for x,y and chosen 
!-------------------------------------------------------------------- 
 
subroutine adatom_deactivation(x,y,chosen) 
use surface_module 
use rates_module 
implicit none 
 
integer, intent(in) :: x,y,chosen 
 
if(surface(2,x,y).ne.red .and. surface(2,x,y) .ne. light_red .and. surface(2,x,y) .ne. 
yellow) then 
 write(*,*) "From deactivation" 
 write(*,*) "what the deuce? Not an activated adatom!" 
 stop 
end if 
if (surface(2,x,y) .eq. red) then 
 surface(2,x,y) = green 
 adatom_Deactivation_Count = adatom_Deactivation_Count + 1 
 
else if (surface(2,x,y) .eq. light_red) then 
 surface(2,x,y) = red 
 double_Deactivation_Count = double_Deactivation_Count + 1 
 
else if (surface(2,x,y) .eq. yellow) then 
 surface(2,x,y) = light_red 
 triple_Deactivation_Count = triple_Deactivation_Count + 1 
else 
 write(*,*) "What the deuce?  Am I anything?" 
 stop 
end if 
 
call set_new_rate(x,y, reverserategrid(x,y)) 
 
end subroutine adatom_deactivation 
 
 
add_adatom.f90 
!This subroutine executes an add adatom to the surface process 
!Surface type is chaned to 4 and nucleate is called.  If the new 
!adatom is next to an exiting surface site Surface type is changed to 1 
!Then a new rate is set for x,y and chosen depending on surface type 
 
subroutine add_adatom(x,y,chosen,theCase) 
use surface_module 
use rates_module 
implicit none 
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integer, intent(in) :: x,y,chosen,theCase 
logical :: can_stick_north,can_stick_east,can_stick_south,can_stick_west 
if(surface(2,x,y).ne.magenta .and. surface(2,x,y).ne.red & 
 .and. surface(2,x,y) .ne. light_red .and. surface(2,x,y) .ne. yellow) then 
 write(*,*) "what the deuce? Not an activated surface!" 
        write(*,*) "surface type is:",surface(2,x,y) 
 stop 
end if 
 
select case (theCase) 
 case (1) 
  surface(2,x,y) = green 
  adatom_Adsorption_Count = adatom_Adsorption_Count + 1 
 case (2) 
  surface(2,x,y) = red 
  CH2_Adsorption_Count = CH2_Adsorption_Count + 1 
 case (3) 
  surface(2,x,y) = light_red 
  CH_Adsorption_Count = CH_Adsorption_Count + 1 
 case (4) 
  surface(2,x,y) = yellow 
  C_Adsorption_Count = C_Adsorption_Count + 1 
 case default 
  write (*,*) "What the deuce?  Something broke..." 
  stop 
end select 
surface(1,x,y) = surface(1,x,y) + 1 
 
if (can_stick_north(x,y).or.can_stick_east(x,y)& 
.or.can_stick_south(x,y).or.can_stick_west(x,y)) then 
 if (surface(2,x,y) .eq. green) then  
   surface(2,x,y) = grey 
 else  
   surface(2,x,y) = magenta 
 end if 
 er = er + 1 
end if 
 
call set_new_rate(x,y,reverserategrid(x,y)) 
 
if (isWriting) then 
  call visual(x,y,0,0,1) 
end if 
 
end subroutine add_adatom 
 
 
betascission.f90 
!------------------------------------------------------------------------------ 
! betascission() executes a betascission process.  Surface changed 
! to 1 and new rate set for x,y,chosen 
!------------------------------------------------------------------------------ 
subroutine betascission(x,y,chosen) 
use surface_module 
use rates_module 
implicit none 
 
integer, intent(in) :: x,y,chosen 
 
 
surface(1,x,y) = surface(1,x,y) - 2 
surface(2,x,y) = magenta 
call set_new_rate(x,y,reverserategrid(x,y)) 
beta_Count = beta_Count + 1 
 
if (isWriting) then 
  call visual(x,y,0,0,4) 
end if 
 
end subroutine betascission 
 
 
boundary.f90 
!This subroutine imposes boundary conditions for 8 positions relative to x,y 
! 8  1  2    - here X is the atom at position (x,y) 
! 7  X  3 
! 6  5  6 
 
subroutine boundary(x, y, xn, yn, cardinal) 
use general_module 
implicit none 
 
integer, intent(in) :: x,y,cardinal 
 
integer, intent(out)  :: xn, yn 
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 if (cardinal.eq.1) then 
   xn=x 
   yn=y+1 
   if (yn.gt.grid_y) yn=yn-grid_y 
 else if (cardinal.eq.2) then  
   xn = x+1 
   yn = y+1 
   if (xn.gt.grid_x) xn=xn-grid_x 
   if (yn.gt.grid_y) yn=yn-grid_y 
 else if (cardinal.eq.3) then  
   xn = x+1 
   yn = y   
   if (xn.gt.grid_x) xn=xn-grid_x 
 else if (cardinal.eq.4) then  
   xn = x+1 
   yn = y-1 
   if (xn.gt.grid_x) xn=xn-grid_x 
   if (yn.lt.1) yn=yn+grid_y 
 else if (cardinal.eq.5) then  
   xn = x 
   yn = y-1 
   if (yn.lt.1) yn=yn+grid_y 
 else if (cardinal.eq.6) then 
    xn = x-1 
    yn = y-1 
    if (xn.lt.1) xn=xn+grid_x 
    if (yn.lt.1) yn=yn+grid_y 
 else if (cardinal.eq.7) then 
    xn = x-1 
    yn = y 
    if (xn.lt.1) xn=xn+grid_x 
 else if (cardinal.eq.8) then 
    xn = x-1 
    yn = y+1 
    if (xn.lt.1) xn=xn+grid_x 
    if (yn.gt.grid_y) yn=yn-grid_y 
 end if 
 
 
end subroutine 
 
 
can_functions.f90 
!boolean function that returns true is (x,y) can beta 
logical function can_beta(x,y) 
use surface_module 
use general_module 
implicit none 
integer, intent(in) :: x,y 
integer :: xn, yn 
 
can_beta = .false. 
call get_neighbour(x,y) 
if (grid_x .gt. 1 .and. grid_y .gt. 1) then 
 if (surfnn(1) .eq. -2 .and. surfnn(2) .eq. -2 .and. surfnn(3).eq.-2 .and. 
surfnn(4).eq. -2 .and. surface(1,x,y).ge.2) then 
  can_beta = .true. 
 end if 
end if 
if (grid_y.le.1) then 
 if (surfnn(2).le.-2.and.surfnn(4).le.-2.and.surface(1,x,y).ge.2)then 
  can_beta = .true. 
 end if 
end if 
if (grid_x.le.1) then 
 if (surfnn(1).le.-2.and.surfnn(3).le.-2.and.surface(1,x,y).ge.2) then 
  can_beta = .true. 
 end if 
end if 
 
 
end function can_beta 
!boolean function that returns true is (x,y) can jump 
logical function can_jump(x,y) 
use surface_module 
use general_module 
implicit none 
 
integer, intent(in) :: x,y 
 
integer :: xn, yn, jumpnum,ii 
logical :: onedim 
can_jump = .false. 
 
 
jumpnum = 0 
call get_neighbour(x,y) 
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if (grid_x .le. 1 .and. grid_y .gt. 1) then 
 if (surfnn(1) .lt. 0) jumpnum = jumpnum +1 
 if (surfnn(3) .lt. 0) jumpnum = jumpnum + 1 
else if (grid_y .le. 1 .and. grid_x .gt. 1) then 
 if (surfnn(2) .lt. 0) jumpnum = jumpnum +1 
 if (surfnn(4) .lt. 0) jumpnum = jumpnum + 1 
else if (grid_y .gt. 1 .and. grid_x .gt. 1.) then 
 do ii = 1 ,4 
  if (surfnn(ii) .lt. 0) jumpnum = jumpnum +1 
 end do 
else 
 jumpnum = 0 
 write(*,*) "Why did this happen in can_jump?" 
end if 
 
if (grid_y .le. 1 .or. grid_x .le. 1 .and. jumpnum .ge. 1) then 
 can_jump = .true. 
else if (grid_y .gt.1 .and. grid_x .gt. 1 .and. jumpnum .ge. 2) then 
 can_jump = .true. 
else 
 can_jump = .false. 
end if 
 
if (surface(1,x,y) .eq. 0) can_jump = .false. 
 
end function can_jump 
 
 
!boolean function that returns true if (x,y) can migrate east 
logical function can_migrate_east(x,y) 
use surface_module 
use general_module 
implicit none 
integer, intent(in) :: x,y 
integer :: xn, yn 
logical is_radical 
 
can_migrate_east = .false. 
call boundary(x, y, xn, yn, 3) 
!write(*,*) "Xn,Yn from mig_east",xn,yn  
if (is_radical(xn,yn).and. (surface(1,xn,yn).lt.surface(1,x,y)).and.grid_x.gt.1) 
can_migrate_east = .true. 
end function can_migrate_east 
 
 
!boolean function that returns true if (x,y) can migrate north 
logical function can_migrate_north(x,y) 
use surface_module 
use general_module 
implicit none 
integer, intent(in) :: x,y 
integer :: xn, yn 
logical is_radical 
 
can_migrate_north = .false. 
call boundary(x, y, xn, yn, 1) 
!write(*,*) "Xn,Yn from mig_north",xn,yn  
if (is_radical(xn,yn) .and. (surface(1,xn,yn).lt.surface(1,x,y)).and.grid_y.gt.1) 
can_migrate_north = .true. 
end function can_migrate_north 
 
 
!boolean function that returns true is (x,y) can migrate_south 
logical function can_migrate_south(x,y) 
use surface_module 
use general_module 
implicit none 
integer, intent(in) :: x,y 
integer :: xn, yn 
logical is_radical 
can_migrate_south = .false. 
call boundary(x, y, xn, yn, 5) 
!write(*,*) "Xn,Yn from mig_south",xn,yn  
if (is_radical(xn,yn) .and. (surface(1,xn,yn).lt.surface(1,x,y)).and.grid_y.gt.1) 
can_migrate_south = .true. 
 
end function can_migrate_south 
 
 
!boolean function that returns true is (x,y) can migrate_west 
logical function can_migrate_west(x,y) 
use surface_module 
use general_module 
implicit none 
integer, intent(in) :: x,y 
integer :: xn, yn 
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logical is_radical  
can_migrate_west = .false. 
call boundary(x, y, xn, yn, 7) 
!write(*,*) "Xn,Yn from mig_west",xn,yn  
if (is_radical(xn,yn) .and. (surface(1,xn,yn).lt.surface(1,x,y)).and.grid_x.gt.1) 
can_migrate_west = .true. 
end function can_migrate_west 
 
 
!boolean function that returns true is (x,y) can stick 
logical function can_stick_east(x,y) 
use surface_module 
use general_module 
implicit none 
integer, intent(in) :: x,y 
integer :: xn, yn 
can_stick_east = .false. 
call boundary(x, y, xn, yn, 3) 
if (surface(1,xn,yn) .ge. surface(1,x,y).and.grid_x.gt.1) can_stick_east = .true. 
end function can_stick_east 
 
 
!boolean function that returns true is (x,y) can stick 
logical function can_stick_north(x,y) 
use surface_module 
use general_module 
implicit none 
integer, intent(in) :: x,y 
integer :: xn, yn 
 
can_stick_north = .false. 
call boundary(x, y, xn, yn, 1) 
if (surface(1,xn,yn) .ge. surface(1,x,y).and.grid_y.gt.1) can_stick_north = .true. 
 
end function can_stick_north 
!boolean function that returns true is (x,y) can stick_south 
logical function can_stick_south(x,y) 
use surface_module 
use general_module 
implicit none 
integer, intent(in) :: x,y 
integer :: xn, yn 
 
can_stick_south = .false. 
call boundary(x, y, xn, yn, 5) 
if (surface(1,xn,yn) .ge. surface(1,x,y).and.grid_y.gt.1) can_stick_south = .true. 
 
end function can_stick_south 
!boolean function that returns true is (x,y) can stick_west 
logical function can_stick_west(x,y) 
use surface_module 
use general_module 
implicit none 
integer, intent(in) :: x,y 
integer :: xn, yn 
 
  
can_stick_west = .false. 
call boundary(x, y, xn, yn, 7) 
if (surface(1,xn,yn) .ge. surface(1,x,y).and.grid_x.gt.1) can_stick_west = .true. 
end function can_stick_west 
 
 
!boolean function 
logical function is_radical(x,y) 
use surface_module 
use general_module 
implicit none 
integer, intent(in) :: x,y 
is_radical = .false. 
if ((surface(2,x,y) .eq. magenta) .or. (surface(2,x,y) .eq. red) & 
.or. (surface(2,x,y) .eq. light_red).or. (surface(2,x,y) .eq. yellow)) is_radical = 
.true. 
!write(*,*) "X,Y from is_radical",x,y,is_Radical,surface(2,x,y) 
end function is_radical 
 
 
 
 
etch_adatom.f90 
!This subroutine executes an adatom etching process 
!Surface type is chaned to 2 and 1 element is subtracted from 
!the surface count array for (x,y), and new rate is set for x,y and chosen 
!nchosen is used becuase etching is not the fist process of it's type 
 
subroutine etch_adatom(x,y,chosen) 
use surface_module 
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use rates_module 
implicit none 
 
integer, intent(in) :: x,y,chosen 
 
if(surface(2,x,y) .ne. magenta .and. surface(2,x,y) .ne. red& 
 .and. surface(2,x,y) .ne. light_red .and. surface(2,x,y) .ne. yellow) then 
        write(*,*) "From etch with love" 
 write(*,*) "what the deuce? Not an activated adatom!" 
 stop 
end if 
if(surface(1,x,y) < 0) write (*,*) "Surface < 0, can't etch" 
if(surface(1,x,y) .eq. 0) then 
    write(*,*) "Hmmm this shouldn't etch" 
    stop 
end if 
if(surface(1,x,y) > 0) then 
 surface(2,x,y) = magenta   
 surface(1,x,y) = surface(1,x,y) - 1 
 etch_Count = etch_Count + 1 
 if (isWriting) then 
  call visual(x,y,0,0,2) 
 end if 
end if 
 
call set_new_rate(x,y,reverserategrid(x,y)) 
 
end subroutine etch_adatom 
 
 
etch_rate.f90 
subroutine etch_rate(NN,theRate) 
use initial_module 
use general_module  
implicit none 
 
integer, intent(in) :: NN 
real(kind=8), intent(out) :: theRate 
integer :: ddG 
 
ddG = 4*4184 
 
if (Etch .ne. 0) then 
  theRate = (1.38E-23 * Ts / 6.63E-34) * EXP(-(Eetch + NN*ddG)/ (8.314 * Ts)) 
end if 
 
end subroutine etch_rate 
 
 
execute_rate.f90 
!This subroutine is for executing a chosen ratetype.  Each process 
!is an individual subroutine to enable ease of adding new processes 
 
subroutine execute_rate(x, y, chosen) 
use general_module 
use rates_module 
use surface_module 
implicit none 
 
integer, intent(in) :: x, y,chosen 
!write (*,*) ratetype,x,y,surface(1,x,y) 
select case(ratetype) 
 case(1) 
  call surface_activation(x,y,chosen)        
  call update_neighbour(x,y) 
 case(2) 
  call surface_deactivation(x,y,chosen) 
  call update_neighbour(x,y) 
 case(3) 
  call add_adatom(x,y,chosen,1) 
  call randomise()                        
  call update_neighbour(x,y) 
 case(4) 
  call adatom_activation(x,y,chosen)  
  call update_neighbour(x,y) 
 case(5)  
  call etch_adatom(x,y,chosen) 
  call randomise() 
  call update_neighbour(x,y) 
 case(6) 
  call adatom_deactivation(x,y,chosen) 
  call update_neighbour(x,y) 
!        case(7) 
!  call migrate(x,y,chosen) 
!  call randomise() 
 case(8) 
  call betascission(x,y,chosen) 
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  call randomise() 
  call update_neighbour(x,y) 
 case(9)  
  call add_adatom(x,y,chosen,2) 
  call randomise() 
  call update_neighbour(x,y) 
 case(10)  
  call add_adatom(x,y,chosen,3) 
  call randomise() 
  call update_neighbour(x,y) 
 case(11)  
  call add_adatom(x,y,chosen,4) 
  call randomise() 
  call update_neighbour(x,y) 
 case(12)  
  call add_adatom(x,y,chosen,5) 
  call randomise() 
  write(*,*) "Something messed up in the execute rate case selection!" 
 case(13)  
  call add_adatom(x,y,chosen,6) 
  call randomise() 
  write(*,*) "Something messed up in the execute rate case selection!" 
 case(14)  
  call add_adatom(x,y,chosen,7) 
  call randomise() 
  write(*,*) "Something messed up in the execute rate case selection!" 
 case(15)  
  call stick(x,y,chosen) 
  call randomise() 
  call update_neighbour(x,y) 
 case(71) 
  call migrate(x,y,chosen,1) !Migrate North 
  call randomise() 
  call update_neighbour(x,y) 
 case(72) 
  call migrate(x,y,chosen,3) !Migrate North 
  call randomise() 
  call update_neighbour(x,y) 
 case(73) 
  call migrate(x,y,chosen,5) !Migrate North 
  call randomise() 
  call update_neighbour(x,y) 
 case(74) 
  call migrate(x,y,chosen,7) !Migrate North 
  call randomise() 
  call update_neighbour(x,y) 
 case default 
  write(*,*) "Something messed up in the execute rate case selection!" 
end select 
 
end subroutine 
 
 
general_module.f90 
!This module provides a general global module for variables and  
!constants used in many subroutines. 
 
module general_module 
implicit none 
save 
 
real(kind=8), parameter :: kb = 1.3806503e-23  
real(kind=8), parameter :: h = 6.626068e-34 
real(kind=8), parameter :: rc = 8.31447215  
real(kind=8), parameter :: temp = 917.12 
!real(kind=8), parameter :: Tns = 1173 
!real(kind=8), parameter :: Ts = 1173 
integer, parameter :: num_rts_per_site = 25!7 
 
integer :: grid_x 
integer :: grid_y 
integer :: mcsteps 
integer :: ratetype 
integer :: n 
integer :: x_do 
integer :: y_do 
integer :: whoami 
integer :: lowest_num 
 
real(kind=8) :: TotalTime 
real(kind=8) :: endTime 
real(kind=8) :: dt 
real(kind=8) :: betarate 
real(kind=8) ::  Fmr 
real(kind=8) :: surfaceActivate 
real(kind=8) :: surfaceDeactivate 
real(kind=8) :: CH3add 
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real(kind=8) :: CH2add 
real(kind=8) :: CHadd 
real(kind=8) :: Cadd 
real(kind=8) :: CH2insert 
real(kind=8) :: CHinsert 
real(kind=8) :: Cinsert 
real(kind=8) :: adatomActivation 
real(kind=8) :: adatomEtch 
real(kind=8) :: adatomDeactivation 
real(kind=8) :: adatomMigration 
real(kind=8) :: SAMigration 
real(kind=8) :: aveheight,rmsdh,rms,kurt 
real(kind=8) :: A_k1, Ea_k1 
real(kind=8) :: A_km1, Ea_km1 
real(kind=8) :: Aetch, Eetch 
real(kind=8) :: A_k2 
real(kind=8) :: Ea_beta 
real(kind=8) :: e_factor 
real(kind=8) :: output_Time_Step 
 
logical :: isRandom 
logical :: isVisual 
logical :: insertion 
end module general_module 
 
 
get_neighbour.f90 
!This subroutine returns an array called surfnn(4).  Each element 
!represents a cardinal direction for the point (x,y) 
SUBROUTINE get_neighbour(x,y) 
 
use surface_module 
 
implicit none 
 
integer, intent(in) ::  x,y 
 
 
integer :: xnew,ynew 
surfnn = 0 
xnew=1 
ynew=1 
call boundary (x,y,xnew,ynew,1) 
     surfnn(1)  = surface(1,xnew,ynew) - surface(1,x,y) 
call boundary (x,y,xnew,ynew,3) 
      surfnn(2)  = surface(1,xnew,ynew) - surface(1,x,y) 
call boundary (x,y,xnew,ynew,5) 
      surfnn(3)  = surface(1,xnew,ynew) - surface(1,x,y) 
call boundary (x,y,xnew,ynew,7) 
      surfnn(4)  = surface(1,xnew,ynew) - surface(1,x,y) 
 
 
END SUBROUTINE get_neighbour 
 
 
initialise_rates.f90 
!This subroutine initialises the rates, rategrid, and  
!reverserategrid arrays 
subroutine initialise_rates() 
use general_module 
use rates_module 
implicit none 
 
 
integer :: i,j,k,ii 
rates = 0;rategrid = 0;reverserategrid = 0 
 
isWriting = isVisual 
 
ii = 1 !ii = keeps track of multiple rates for one grid point 
 
do k = 1, grid_y 
  do j = 1, grid_x 
 rates(ii) = surfaceActivate 
        rategrid(1,ii) = j 
        rategrid(2,ii) = k 
        rategrid(3,ii) = 1 
 reverserategrid(j,k) = ii 
        ii = ii + 1 
 do i = 1, num_rts_per_site - 1 
         rategrid(1,ii) = j 
         rategrid(2,ii) = k 
  rategrid(3,ii) = 0 
  ii = ii + 1 
 end do 
  end do 
end do 
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end subroutine initialise_rates 
 
 
 
initialise_variables.f90 
subroutine initialise_variables() 
use general_module 
use surface_module 
implicit none 
 
 
surface_Migration_Count = 0; adatom_Adsorption_Count =0; etch_Count = 0 
surface_Activation_Count=0;surface_Deactivation_Count=0;adatom_Activation_Count=0;adatom_
Deactivation_Count=0 
beta_Count = 0;double_Activation_Count=0;double_Deactivation_Count = 0 
triple_Activation_Count=0;triple_Deactivation_Count = 0 
lh = 0; er = 0 
 
end subroutine initialise_variables 
 
 
initial_module.f90 
module initial_module 
implicit none 
save 
 
real(kind=8) :: CHxconc,CH3conc,CH2conc,CHconc,Cconc,Hconc,H2conc,Ts,Tns 
real(kind=8) :: k1,k2,km1,km2,k3,k4,k14,k5,k6,k7 
real(kind=8) :: MCH3,MCH2,MCH,MC,Par,sCH3,gCH3,sCH2,gCH2,sCH,gCH,sC,gC,v 
real(kind=8) :: Fyuri,Fbutler,Fbr 
real(kind=8) :: CH3impactrate,CH2impactrate,CHimpactrate,Cimpactrate 
real(kind=8) :: activaterate,deactivaterate 
real(kind=8) :: Cinsertionrate,CHinsertionrate,CH2insertionrate 
real(kind=8) :: kmig, Amig,Emig,ksmig,dbmigrate,migrate,migratio 
real(kind=8) :: etchrate,etchfactor,dcalc, Fsp3 
real(kind=8) :: hoppingrate,stickprob,stickfactor,CCbondlength 
character(len=10) :: model,defmodel 
integer :: SurfAct, SurfDeAct, Add, Etch,AddAct,AddDeAct,Mig,beta 
end module initial_module 
 
 
init_random_seed.f90 
!This subroutine is call at the start of the program to make  
!the pseudo random number generator more random by seeding  
!it from the clock each time the program is called 
 
SUBROUTINE init_random_seed() 
IMPLICIT NONE 
 
INTEGER :: i, n, clock 
INTEGER, DIMENSION(:), ALLOCATABLE :: seed 
   
CALL RANDOM_SEED(size = n) 
ALLOCATE(seed(n)) 
           
CALL SYSTEM_CLOCK(COUNT=clock) 
   
seed = clock + 37 * (/ (i - 1, i = 1, n) /) 
CALL RANDOM_SEED(PUT = seed) 
   
DEALLOCATE(seed) 
END SUBROUTINE 
 
 
 
locate.f90 
!This subroutine finds a number u, in an ordered sum array x 
!and returns index k such than x(k-1)< u <= x(k+1) 
SUBROUTINE locate(x, u, k, n) 
 
DOUBLE PRECISION,INTENT(IN)  :: u 
INTEGER,INTENT(IN)  :: n 
 
DOUBLE PRECISION, DIMENSION(n),intent(in) :: x 
 
INTEGER, INTENT(OUT) :: k 
INTEGER :: i,j 
k = 1 
if (u == 0.0) k = n + 1 
 
do 
 if (k > n) exit 
 if (x(k) >= u) exit 
 k = k+1 
end do 
!write (*,*) n, k, u 
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END SUBROUTINE locate 
 
 
 
main.f90 
!------------------------------------------------------------------------------- 
!                  Simplified 3-D kinetic Monte Carlo simulation 
!                  of growth of CVD diamond on the (100) surface 
!                    
!                v 2.0 (beta) 
! 
! Author - Jeff Rodgers 
!       Date   - 4 Oct 2013 
! 
!       main.f90 is the main program from which the simulation starts and ends 
! 
!       Description -   This program simulates the growth of CVD diamond on 
!                       the (100) surface. Many of the rate constant in the 
!                       catalogue are taken from the simplified 2-D model 
!                       from the paper 'J. Appl. Phys. 108 (2010) 114909'. 
!                       New to this model is etching modeled as an activated 
!                       process, with an exponential dependene on bonding to  
!                       nearest neighbours  
! 
!------------------------------------------------------------------------------- 
 
 
program KMC 
 
use general_module  !Environment modules loaded 
use rates_module 
use surface_module 
 
implicit none 
 
real(kind=8) :: ratesum, ran1,ran2 
 
integer ::  i,j,k,cnt,chosen,prev_chosen,time_temp 
integer, allocatable, dimension(:,:) :: height_arr 
 
TotalTime = 0;chosen=0;dt = 0;lowest_num = 2;time_temp = 1 
 
open(unit=18,file="adatom.txt") !Open output streams to print what's 
    !going on during the program run! 
open(unit=9,file="test.out")    !test.out now deprecated 
open(unit=29,file="visual.out") 
open(unit=39,file="growth_vs_time.txt") 
open(unit=61,file="roughness_plot.txt") 
open(unit=20,file="main_output.txt") 
 
write (20,*) ,"-------------------------------------------------------------" 
call read_input_file() 
call read_energy_file() 
call paulsrates() 
call initialise_variables() 
write (20,*),"-------------------------------------------------------------" 
 
n = num_rts_per_site*grid_x*grid_y !max number of posible rates(6 per grid site) 
 
allocate(surface(3,grid_x,grid_y)); surface = 1 
allocate(rategrid(3,n )) 
allocate(reverserategrid(grid_x,grid_y )) 
allocate(rates(n)) 
allocate(rsv(n)) 
allocate(height_arr(grid_x,grid_y)) 
 
call initialise_rates() 
surface(1,:,:) = 0 
if (isRandom) CALL init_random_seed()  !Random seed can be turned on or off 
with boolean from input file 
 
!The main Monte Carlo loop begins here 
!This is where the magic happens! 
mcsteps = 1;cnt=1 
chosen = 1 
prev_chosen = 1 
 
rsv = 0                 !Rate Sum Vector(rsv), ordered sum of rates 
rsv(1) = rates(1) 
do j = 2,n 
 rsv(j) = rsv(j-1)+rates(j) 
end do 
 
do while (TotalTime < endTime) 
 ratesum = sum(rates) 
        !Rate Sum Vector(rsv), ordered sum of rates 
 if (lowest_num .eq. 1) then 
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  rsv(1) = rates(1) 
  lowest_num = 2 
 end if 
 do j = lowest_num,n 
  rsv(j) = rsv(j-1)+rates(j) 
 end do 
 call random_number(ran1) 
 ran2 = ran1 * ratesum 
 call locate(rsv, ran2, chosen, n) 
 lowest_num = 0 
 if (chosen > n) then 
  print *, "All of your rates are now zero" 
  goto 999 
 end if 
 x_do = rategrid(1,chosen); y_do = rategrid(2,chosen);ratetype = rategrid(3, 
chosen) 
 prev_chosen = chosen 
 
 call execute_rate(x_do,y_do,chosen) 
 call update_time(ran1, ratesum) 
 height_arr =  surface(1,:,:) 
 if (TotalTime .gt. (time_temp*output_Time_Step)) then 
  call stats(height_arr) 
  write(61,*) TotalTime,",",mcsteps,",",rmsdh,",",rms 
  write(39,*) TotalTime, (0.08917*0.001*aveheight*3600)/TotalTime 
  write(18,*) 
TotalTime,adatom_Adsorption_Count,etch_Count,surface_Activation_Count,surface_Deactivatio
n_Count,& 
adatom_Activation_Count,adatom_Deactivation_Count,surface_Migration_Count,beta_Count,doub
le_Activation_Count,& 
double_Deactivation_Count,triple_Activation_Count,triple_Deactivation_Count,CH2_Adsorptio
n_Count,CH_Adsorption_Count,& 
C_Adsorption_Count 
 
  time_temp = time_temp + 1 
 end if 
!  write(9,*) 
mcsteps,ratetype,TotalTime,adatom_Adsorption_Count,etch_Count,surface_Activation_Count,su
rface_Deactivation_Count,& 
!adatom_Activation_Count,adatom_Deactivation_Count,surface_Migration_Count,beta_Count,dou
ble_Activation_Count,& 
!double_Deactivation_Count,triple_Activation_Count,triple_Deactivation_Count,CH2_Adsorpti
on_Count,CH_Adsorption_Count,& 
!C_Adsorption_Count 
 
 mcsteps = mcsteps + 1 
 cnt = cnt + 1 
end do    !This is the end of one MC step 
999 print *, "End of Program" 
 
call write_output() 
 
!Deallocate all allocatable arrays 
deallocate(surface,rategrid,reverserategrid, rates, height_arr) 
!Close all output streams 
close(18);close(29);close(39);close(61);close(20);close(9) 
 
!An awk script is called to make visual.out look more appealing to movie.py 
 call system('awk -f vis.awk visual.out > tmp') 
 call system('mv tmp visual.out') 
 call system('mv visual.out visualise') 
 close(29) 
 
end program KMC 
 
 
migrate.f90 
!This subroutine executes a migration process.  A species can migriate 
!in a maximum of 4 possible directions.  If more than one direction a  
!random number is used to choose which. 
 
 
subroutine migrate(x,y,chosen,direction) 
use surface_module 
use rates_module 
implicit none 
 
integer, intent(in) :: x,y,chosen,direction 
integer :: xn,yn 
logical :: lemming_stick  
 
lemming_stick = .false. 
 
call boundary(x,y,xn,yn,direction) 
 
if (surface(1,x,y) - surface(1,xn,yn) .gt. 1) then  
 lemming_stick = .true. 
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end if 
 
surface(2,x,y) = magenta 
surface(1,x,y) = surface(1,x,y) - 1 
call set_new_rate(x,y,reverserategrid(x,y)) 
 
surface(2,xn,yn) = red 
surface(1,xn,yn) = surface(1,xn,yn) + 1 
if (lemming_stick) surface(2,xn,yn) = grey 
call set_new_rate(xn,yn,reverserategrid(xn,yn)) 
 
!write(18,*) "height",surface(1,x,y)+1,"height",surface(1,xn,yn) - 1 
 
surface_Migration_Count = surface_Migration_Count + 1 
 
if (isWriting) then 
 call visual(x,y,xn,yn,3) 
end if 
 
end subroutine migrate 
 
 
randomise.f90 
subroutine randomise() 
use initial_module 
use general_module 
use surface_module 
use rates_module 
implicit none 
 
integer, dimension(:), allocatable :: arr 
integer :: x,y,ii,how_many, rad,thenum 
real(kind=8) :: ran 
 
!write (*,*) "Before" 
!write (*,*) surface(2,:,:) 
how_many =0  
rad = 0 
do x = 1, grid_X 
 do y = 1, grid_y 
  if (surface(2,x,y) .eq. grey .or. surface(2,x,y) .eq. magenta) then 
   if (surface(2,x,y) .eq. magenta) then 
    rad = rad + 1 
   end if 
   surface(2,x,y) = 0 
   how_many = how_many + 1 
  end if 
 end do 
end do 
allocate(arr(how_many)) 
!write (*,*) 100*real(rad)/real(how_many)  
arr = grey 
do while (rad > 0) 
 call random_number(ran) 
 thenum=int(ran*how_many)+1 
 if (arr(thenum) .eq. grey) then 
  arr(thenum) = magenta 
  rad = rad - 1 
 end if 
end do 
if (rad > 0)write(*,*) "Rad after", rad 
ii = 1 
do x = 1, grid_X 
 do y = 1, grid_y 
  if (surface(2,x,y) .eq. 0) then 
   surface(2,x,y) = arr(ii) 
   ii = ii + 1 
   call set_new_rate(x,y,reverserategrid(x,y)) 
   call update_neighbour(x,y) 
  end if 
 end do 
end do 
deallocate(arr) 
 
!write (*,*) "After"  
!write (*,*) surface(2,:,:) 
end subroutine 
 
 
rates_list.f90 
subroutine paulsrates() 
use initial_module 
use general_module 
implicit none 
 
 
!--------------calculate starting parameters 
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!chemical reactions defined as: 
!  (1)    H(g)  +  CdH  =  H2(g)  + Cd 
!  (2)    H(g)  +  cd   =  CdH 
!  (3)    CH3(g) + Cd-Cd = CH2-Cd-CdH 
!  (4)    CHx(g) + Cd-Cd  = CH(x-1)-Cd-CdH 
 
CHxconc = CH2conc + CHconc + Cconc 
!H abstraction rate constant, reaction (1) 
k1 = A_k1 * (Tns) ** .5 * EXP(-Ea_k1 / Ts)  !units cm3 s-1 (values from our JAP 2007 
paper) 
 
!H2 addition to surface radical rate constant, reverse of reaction (1) 
km1 = A_km1 * (Tns) ** .5 * EXP(-Ea_km1 / Ts) 
 
!H addition to surface radical rate constant, reaction (2) 
k2 = A_k2 * (Tns) ** .5 
 
!Backward step, i.e. desorption of H from C-H surface, reverse of (2), 
!assuming CH bond energy barrier is 413 kJ/mol and pre-exp factor is 1e13 s-1 
!and that it is Arrhenius.  km2 ~ 0 for all Ts. 
km2 = (1E+13 / 6.023E+23) * EXP(-413000 / (8.314 * Ts)) 
 
!CH3 insertion into surface dimer radical rate constant, reaction (3) 
k3 = 2.4E-13 * (Tns) ** .5 
 
!CHx insertion into dimer radical, reaction (4), is same as that for CH3 
k4 = k3 
 
!Rate constant for defect formation (Butler) 
k14 = 1.12E+16 * EXP(-201600 / (8.314 * Ts)) / Ts 
 
! fraction of open (monorad) sites 
Fyuri = 1 / (1 + .3 * EXP(3430 / Ts) + .1 * EXP(-4420 / Ts) * H2conc / Hconc) 
Fbutler = k1 / (k1 + k2)     ! simplified version of Butler!s model, from JAP 99 104907 
IF (model == "yuri") THEN      !Yuri!s model 
  Fmr = Fyuri 
ELSE                         !Butler!s model 
  Fmr = Fbutler 
END IF 
Fbr = Fmr * Fmr              ! no. biradical sites 
 
!CH3 impact rate 
MCH3 = 15                                                          ! mass of CH3 in g 
Par = sCH3 * gCH3                                                  ! Sticking coefficient 
for CH3 addition 
v = 100 * (8000 * 8.314 * Tns / (3.142 * MCH3)) ** .5               ! velocity term of 
CH3 in cm/s 
CH3impactrate = (Par * CH3conc * v * .25) / 1.56E+15               ! on all sites 
 
!CH2 impact rate 
MCH2 = 14                                                           ! mass of CH2 in g 
Par = sCH2 * gCH2                                                   ! Sticking 
coefficient for CH2 addition 
v = 100 * (8000 * 8.314 * Tns / (3.142 * MCH2)) ** .5                ! velocity term of 
CH2 in cm/s 
CH2impactrate = (Par * CH2conc * v * .25) / 1.56E+15                ! on all sites 
 
!CH impact rate 
MCH = 13                                                            ! mass of CH in g 
Par = sCH * gCH                                                     ! Sticking 
coefficient for CH addition 
v = 100 * (8000 * 8.314 * Tns / (3.142 * MCH)) ** .5                 ! velocity term of 
CH in cm/s 
CHimpactrate = (Par * CHconc * v * .25) / 1.56E+15                  ! on all sites 
 
!C impact rate 
MC = 12                                                             ! mass of C in g 
Par = sC * gC                                                       ! Sticking 
coefficient for C addition 
v = 100 * (8000 * 8.314 * Tns / (3.142 * MC)) ** .5                  ! velocity term of C 
in cm/s 
Cimpactrate = (Par * Cconc * v * .25) / 1.56E+15                    ! on all sites 
 
!surface CH2 activation rate 
activaterate = k1 * Hconc + km2 
 
!surface CH2* deactivation rate 
deactivaterate = km1 * H2conc + k2 * Hconc 
 
!C insertion rate constant 
k5 = 8.587E-11 * EXP(-19836 / (8.314 * Ts))       !Based on Arrhenius fit to James model 
Cinsertionrate = k5 * Cconc 
 
!CH insertion rate constant 
k6 = EXP(2000000 * (1 / Ts) ** 2 - (1868.7 / Ts) - 24.923)    !Based on Arrhenius fit to 
James model 
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CHinsertionrate = k6 * CHconc 
 
!CH2(s) insertion rate constant 
k7 = k6                                     !using same fit as for CH 
CH2insertionrate = k7 * CH2conc * .01       !assuming [CH2(s)] is ~1% of [CH2] 
 
!CH2 migration rate constant 
kmig = Amig * EXP(-Emig / (8.314 * Ts))     !rate constant for hopping s^-1 
hoppingrate = kmig * (1 - (1 - Fmr) ** 4)        !modified version of mig rate (s^-1) for 
mapping 2D hops onto 1D lattice 
 
!surface radical migration rate constant (Frenklach paper) 
ksmig = 4.8 * 1E12 * EXP(-155400 / (8.314 * Ts))   !rate constant for radical hopping 
if (grid_x == 1 .or. grid_y == 1) then 
 dbmigrate = kmig * (1 - (1 - Fmr) ** 4)      !modified mig rate (s^-1) for 
mapping 2D hops onto 1D 
 IF (dbmigrate > activaterate) THEN 
   migrate = dbmigrate             !CH2 migration rate same as radical mig rate 
 ELSE 
   migrate = activaterate          !or CH2 mig rate same as surface activation 
rate if this is bigger 
 END IF 
 migratio = INT(hoppingrate / migrate)       !no. back & forth hops it!ll make 
before a new radical is created 
else  
 migrate = kmig 
end if 
 
!etching rate constant 
!etchrate = Aetch * DEXP(-Eetch / (8.314d0 * Ts)) 
!etchfactor = 1.569E5 * EXP(-128400.0 / (8.314 * Ts)) 
!etchfactor = e_factor                          !etchrate is 3.3x less than growth rate 
(approx) 
!etchrate = etchfactor * CH3impactrate 
!etchrate = (1.38E-23 * Ts / 6.63E-34) * EXP(-NN*Eetch / (8.314 * Ts)) 
call etch_rate(0,etchrate) 
 
!beta-scission rate constant (Jeremy) 
betarate = (1.38E-23 * Ts / 6.63E-34) * EXP(-Ea_beta / (8.314 * Ts)) 
 
if (SurfAct .eq. 0) then 
 surfaceActivate = 0.0 
else 
 surfaceActivate = activaterate 
end if 
 
if (SurfDeAct .eq. 0) then 
 surfaceDeactivate = 0.0 
else 
 surfaceDeactivate = deactivaterate 
end if 
 
if (Add .eq. 0)then 
 CH3add = 0.0 
 CH2add = 0.0 
 CHadd = 0.0 
 Cadd = 0.0 
 CH2insert = 0.0 
 CHinsert = 0.0 
 Cinsert = 0.0 
else 
 CH3add = CH3impactrate 
 CH2add = CH2impactrate 
 CHadd = CHimpactrate 
 Cadd = Cimpactrate 
 CH2insert = CH2insertionrate 
 CHinsert = CHinsertionrate 
 Cinsert = Cinsertionrate 
end if 
 
if (AddAct .eq.0) then 
 adatomActivation = 0.0 
else 
 adatomActivation = activaterate 
end if 
 
if (AddDeAct .eq. 0) then 
 adatomDeactivation = 0.0 
else 
 adatomDeactivation = deactivaterate 
end if 
 
if (Etch .eq. 0) then 
 adatomEtch = 0.0 
else 
 adatomEtch = etchrate 
end if 
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if (Mig .eq. 0) then 
 adatomMigration = 0.0 
else 
 adatomMigration = migrate 
end if 
if (beta .eq. 0) betarate = 0.0 
 
write (20,'(a20,f15.5)') "Surface Activation", surfaceActivate 
write (20,'(a20,f15.5)') "Surface Deactivation", surfaceDeactivate 
write (20,'(a20,f15.5)') "Add CH3 rate",CH3add 
write (20,'(a20,f15.5)') "Add CH2 rate",CH2add 
write (20,'(a20,f15.5)') "Add CH rate",CHadd 
write (20,'(a20,f15.5)') "Add C rate",Cadd 
write (20,'(a20,f15.5)') "Adatom Activation", adatomActivation 
write (20,'(a20,f15.5)') "Adatom Deactivation", adatomDeactivation 
 
write (20,'(a20,f15.5)') "Etch rate",adatomEtch 
write (20,'(a20,f15.5)') "Migration rate",adatomMigration 
write (20,'(a20,f15.5)') "Beta-Scission rate",betarate 
 
 
 
 
 
 
 
end subroutine paulsrates 
 
 
rates_module.f90 
module rates_module 
implicit none 
save 
 
integer, dimension(:,:), allocatable :: rategrid 
integer, dimension(:,:) , allocatable :: reverserategrid 
real(kind=8), dimension(:), allocatable :: rates, rsv 
 
logical :: isWriting 
 
end module rates_module 
 
 
read_energy_file.f90 
!Does what it says! 
subroutine read_energy_file() 
use initial_module 
use general_module 
implicit none 
 
character(150) :: rubbish 
 
open(unit=8,file="energy.txt") 
 
read (8,*) rubbish 
read (8,*) rubbish 
read (8,*) A_k1, Ea_k1  
read (8,*) rubbish 
read (8,*) A_km1, Ea_km1  
read (8,*) rubbish 
read (8,*) Aetch, Eetch  
read (8,*) rubbish 
read (8,*) A_k2 
read (8,*) rubbish 
read (8,*) Amig, Emig 
read (8,*) rubbish 
read (8,*) e_factor 
read (8,*) rubbish 
read (8,*) Ea_beta 
 
 
END subroutine read_energy_file 
 
 
read_input_file.f90 
!Does what it says! 
subroutine read_input_file() 
use initial_module 
use general_module 
implicit none 
 
character(150) :: rubbish 
 
open(unit=8,file="input.txt") 
 
read (8,*) rubbish 
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read (8,*) rubbish 
read (8,*) SurfAct, SurfDeAct,Add,Etch,AddAct,AddDeAct,Mig,beta 
read (8,*) rubbish 
read (8,*) isRandom 
read (8,*) rubbish 
read (8,*) insertion 
read (8,*) rubbish 
read (8,*) model 
read (8,*) rubbish 
read (8,*) defmodel 
read (8,*) rubbish 
read (8,*) Ts 
read (8,*) rubbish 
read (8,*) Tns 
read (8,*) rubbish 
read (8,*) Hconc 
read (8,*) rubbish 
read (8,*) H2conc 
read (8,*) rubbish 
read (8,*) CH3conc,sCH3,gCH3  
read (8,*) rubbish 
read (8,*) CH2conc,sCH2,gCH2  
read (8,*) rubbish 
read (8,*) CHconc,sCH,gCH  
read (8,*) rubbish 
read (8,*) Cconc,sC,gC  
read (8,*) rubbish 
read (8,*) grid_x 
read (8,*) rubbish 
read (8,*) grid_y 
read (8,*) rubbish 
read (8,*) endTime 
read (8,*) rubbish 
read (8,*) output_Time_Step 
read (8,*) rubbish 
read (8,*) isVisual  
 
END subroutine read_input_file 
 
 
set_new_rate.f90 
!fter a rate is executed on a point element. The rates affected by this 
!change are updated in the catalouge  
 
!bulk diamond lattice (not surface blocks) ----------> 0 (Not yet added) 
 
!surface group --------------------------------------> grey - 1 
!activated surface group ----------------------------> magenta - 2 
!temporarily adsorbed CH2 not yet activated   -------> green - 3 
!singly-activated surface CH2 which can migrate -----> red - 4 
!doubly-activated surface CH which can migrate ------> light red - 5 
!triply-activated surface C which can migrate -------> yellow - 6 
 
subroutine set_new_rate(x,y,chosen) 
use general_module 
use rates_module 
use surface_module 
implicit none 
 
logical :: can_migrate, can_jump, can_stick,can_beta,& 
can_migrate_north,can_migrate_east,can_migrate_south,can_migrate_west,& 
can_stick_north,can_stick_east,can_stick_south,can_stick_west 
 
integer :: neigh_par,tmp 
 
integer, intent(in) :: x, y, chosen 
 
integer :: which,ii 
 
which = surface(2,x,y) 
 
do ii = chosen, chosen + (num_rts_per_site - 1) 
 rategrid(3,ii ) = 0 
 rates(ii ) = 0.0 
end do 
 
neigh_par = 0 
call get_neighbour(x,y) 
do ii = 1, 4 
        tmp = surfnn(ii) 
        if (tmp .ge. 0) then 
                neigh_par = neigh_par + tmp  
        end if 
end do 
 
 
call etch_rate(neigh_par,adatomEtch) 
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!write(*,*) adatomEtch, neigh_par 
 
if (chosen .lt. lowest_num .or. lowest_num .eq. 0) lowest_num = chosen 
if (which .eq. grey) then   !grey 
 rategrid(3,chosen) = 1 
 rates(chosen) = surfaceActivate 
!--------------------------------------------------------------- 
else if (which .eq. magenta) then  !magenta 
 rategrid(3,chosen) = 2 
 rates(chosen) = surfaceDeactivate 
 rategrid(3,chosen + 1) = 3 
 rates(chosen + 1) = CH3add 
 rategrid(3,chosen + 2) = 5 
 if (can_jump(x,y) .and. surface(1,x,y) .gt. 1) then 
  rates(chosen + 2) = 0.00        
  if (surface(1,x,y) == 0 ) write(*,*) "Hmmm? You settin' the wrong 
rate" 
 else if (surface(1,x,y) .gt. 1) then 
  rates(chosen + 2) = adatomEtch/5000 
        else 
                rates(chosen + 2) = 0.0 
 end if 
 rategrid(3,chosen + 3) = 9 
 rates(chosen + 3) = CH2add 
 rategrid(3,chosen + 4) = 10 
 rates(chosen + 4) = CHadd 
 rategrid(3,chosen + 5) = 11 
 rates(chosen + 5) = Cadd 
 if (insertion) then 
  rategrid(3,chosen + 6) = 12 
  rates(chosen + 6) = CH2insert 
  rategrid(3,chosen + 7) = 13 
  rates(chosen + 7) = CHinsert 
  rategrid(3,chosen + 8) = 14 
  rates(chosen + 8) = Cinsert 
 end if 
 rategrid(3,chosen + 9) = 8 
 if (can_beta(x,y)) rates(chosen + 9) = betarate 
!------------------------------------------------------------------------- 
else if (which .eq. green) then  !green 
 rategrid(3,chosen) = 4 
 rates(chosen) = adatomActivation  
 if (insertion) then 
  rategrid(3,chosen + 1) = 12 
  rates(chosen + 1) = CH2insert 
  rategrid(3,chosen + 2) = 13 
  rates(chosen + 2) = CHinsert 
  rategrid(3,chosen + 3) = 14 
  rates(chosen + 3) = Cinsert 
 end if 
!------------------------------------------------------------------------- 
else if (which .eq. red) then  !red 
 rategrid(3,chosen) = 6 
 rates(chosen) = adatomDeactivation 
 rategrid(3,chosen + 1) = 3 
 rates(chosen + 1) = CH3add 
 rategrid(3,chosen + 2) = 9 
 rates(chosen + 2) = CH2add 
 rategrid(3,chosen + 3) = 10 
 rates(chosen + 3) = CHadd 
 rategrid(3,chosen + 4) = 11 
 rates(chosen + 4) = Cadd 
 rategrid(3,chosen + 5) = 5 
 rates(chosen + 5) = adatomEtch 
 rategrid(3,chosen + 6) = 4 
 rates(chosen + 6) = adatomActivation  
 rategrid(3,chosen+7) = 71 
 if (can_migrate_north(x,y)) rates(chosen + 7) = adatomMigration 
 rategrid(3,chosen+8) = 72 
 if (can_migrate_east(x,y)) rates(chosen + 8) = adatomMigration 
 rategrid(3,chosen+9) = 73 
 if (can_migrate_south(x,y)) rates(chosen + 9) = adatomMigration 
 rategrid(3,chosen+10) = 74 
 if (can_migrate_west(x,y)) rates(chosen + 10) = adatomMigration 
 rategrid(3,chosen+11) = 15 
 if (can_stick_north(x,y)) rates(chosen + 11) = adatomMigration 
 rategrid(3,chosen+12) = 15 
 if (can_stick_east(x,y)) rates(chosen + 12) = adatomMigration 
 rategrid(3,chosen+13) = 15 
 if (can_stick_south(x,y)) rates(chosen + 13) = adatomMigration 
 rategrid(3,chosen+14) = 15 
 if (can_stick_west(x,y)) rates(chosen + 14) = adatomMigration 
 rategrid(3,chosen + 15) = 8 
 if (can_beta(x,y)) rates(chosen + 15) = betarate 
!------------------------------------------------------------------------- 
else if (which .eq. light_red) then 



 193 

 rategrid(3,chosen) = 6 
 rates(chosen) = adatomDeactivation 
 rategrid(3,chosen + 1) = 3 
 rates(chosen + 1) = CH3add 
! rategrid(3,chosen + 3) = 9 
! rates(chosen + 3) = CH2add 
! rategrid(3,chosen + 4) = 10 
! rates(chosen + 4) = CHadd 
 rategrid(3,chosen + 2) = 11 
 rates(chosen + 2) = Cadd 
 rategrid(3,chosen + 3) = 5 
 rates(chosen + 3) = adatomEtch 
 rategrid(3,chosen + 4) = 4 
 rates(chosen + 4) = adatomActivation  
        rategrid(3,chosen+5) = 15 
        if (can_stick_north(x,y)) rates(chosen + 5) = adatomMigration 
        rategrid(3,chosen+6) = 15 
        if (can_stick_east(x,y)) rates(chosen + 6) = adatomMigration 
        rategrid(3,chosen+7) = 15 
        if (can_stick_south(x,y)) rates(chosen + 7) = adatomMigration 
        rategrid(3,chosen+8) = 15 
        if (can_stick_west(x,y)) rates(chosen + 8) = adatomMigration 
 
!------------------------------------------------------------------------- 
else if (which .eq. yellow) then 
 rategrid(3,chosen) = 6 
 rates(chosen) = adatomDeactivation 
 rategrid(3,chosen + 1) = 3 
 rates(chosen + 1) = CH3add 
! rategrid(3,chosen + 2) = 9 
! rates(chosen + 2) = CH2add 
! rategrid(3,chosen + 3) = 10 
! rates(chosen + 3) = CHadd 
 rategrid(3,chosen + 4) = 11 
 rates(chosen + 4) = Cadd 
 rategrid(3,chosen + 5) = 5 
 rates(chosen + 5) = adatomEtch     
        rategrid(3,chosen+6) = 15 
        if (can_stick_north(x,y)) rates(chosen + 6) = adatomMigration 
        rategrid(3,chosen+7) = 15 
        if (can_stick_east(x,y)) rates(chosen + 7) = adatomMigration 
        rategrid(3,chosen+8) = 15 
        if (can_stick_south(x,y)) rates(chosen + 8) = adatomMigration 
        rategrid(3,chosen+9) = 15 
        if (can_stick_west(x,y)) rates(chosen + 9) = adatomMigration 
 
end if 
end subroutine 
 
 
stats.f90 
subroutine stats(ht_arr) 
use general_module 
use surface_module 
implicit none 
 
 
integer :: i,j,k 
real(kind=8) :: latt,CC100dist,rmstemp,r,htmp 
integer, intent(in), dimension(grid_x,grid_y) :: ht_arr 
 
rmstemp = 0.0 
htmp=0 
r=0.0 
do i = 1, grid_x 
 do j = 1, grid_y 
  htmp = htmp +  ht_arr(i,j) 
! write(*,*) htmp, ht_arr(1,i) 
 end do 
end do 
aveheight = real(htmp)/real(grid_x*grid_y) 
do i = 1, grid_x 
 do j = 1, grid_y 
! write(*,*) ht_arr(1,i) 
  r = real((ht_arr(i,j)-aveheight)**2) 
  rmstemp = rmstemp + r 
 end do 
end do 
rmsdh = sqrt(rmstemp/real(grid_x*grid_y)) 
 
r = 0.0 
rmstemp = 0.0 
do i = 1, grid_x 
 do j = 1, grid_y 
! write(*,*) ht_arr(1,i) 
  r = real((ht_arr(i,j))**2) 
  rmstemp = rmstemp + r 
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 end do 
end do 
rms = sqrt((1/real(grid_x * grid_y))*rmstemp) 
 
 
 
end subroutine stats 
 
 
stick.f90 
!This subroutine executes a migration process.  A species can migriate 
!in a maximum of 4 possible directions.  If more than one direction a  
!random number is used to choose which. 
 
 
subroutine stick(x,y,chosen) 
use surface_module 
use rates_module 
implicit none 
 
integer, intent(in) :: x,y,chosen 
integer :: xn,yn 
 
if (surface(2,x,y) .eq. red) then  
 surface(2,x,y) = grey 
else 
 surface(2,x,y) = magenta 
end if 
lh = lh + 1 
surface_Migration_Count = surface_Migration_Count + 1 
call set_new_rate(x,y,reverserategrid(x,y)) 
call update_neighbour(x,y) 
end subroutine stick 
 
 
surface_activation.f90 
subroutine surface_activation(x,y,chosen) 
use surface_module 
use rates_module 
implicit none 
 
integer, intent(in) :: x,y,chosen 
integer :: i 
if(surface(2,x,y).ne.grey) then 
 write(*,*) "what the deuce? Not a deactivated surface!" 
 write(*,*) "surface type is:", surface(2,x,y) 
 stop 
end if 
surface(2,x,y) = magenta 
call set_new_rate(x,y, reverserategrid(x,y)) 
 
surface_Activation_Count = surface_Activation_Count + 1 
 
end subroutine surface_activation 
 
 
surface_deactivation.f90 
subroutine surface_deactivation(x,y,chosen) 
use surface_module 
use rates_module 
 
implicit none 
 
integer, intent(in) :: x,y,chosen 
 
integer :: xn, yn, ii 
if(surface(2,x,y).ne.magenta) then 
 write(*,*) "what the deuce? Not an activated surface!" 
 write(*,*) "surface type is:",surface(2,x,y) 
 stop 
end if 
surface(2,x,y) = grey 
call set_new_rate(x,y, reverserategrid(x,y)) 
surface_Deactivation_Count = surface_Deactivation_Count + 1 
 
end subroutine surface_deactivation 
 
 
surface_module.f90 
module surface_module 
implicit none 
save 
 
integer, parameter :: grey = 1 
integer, parameter :: magenta = 2 
integer, parameter :: green = 3  
integer, parameter :: red = 4 
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integer, parameter :: light_red = 5 
integer, parameter :: yellow = 6 
 
integer, dimension(:,:,:), allocatable :: surface 
real(kind=8), dimension(:,:), allocatable :: xyz 
integer, dimension(4) :: surfnn,bounds,sbounds 
integer :: er, lh 
 
integer :: adatom_Adsorption_Count 
integer :: etch_Count 
integer :: surface_Activation_Count 
integer :: surface_Deactivation_Count 
integer :: adatom_Activation_Count 
integer :: adatom_Deactivation_Count 
integer :: surface_Migration_Count 
integer :: beta_Count 
integer :: double_Activation_Count 
integer :: double_Deactivation_Count  
integer :: triple_Activation_Count 
integer :: triple_Deactivation_Count  
integer :: CH2_Adsorption_Count 
integer :: CH_Adsorption_Count 
integer :: C_Adsorption_Count 
 
 
end module surface_module 
 
 
update_neighbour.f90 
!This subroutine returns an array called surfnn(4).  Each element 
!represents a cardinal direction for the point (x,y) 
SUBROUTINE update_neighbour(x,y) 
 
use surface_module 
use rates_module 
implicit none 
 
integer, intent(in) ::  x,y 
 
 
integer :: xn,yn 
call boundary(x,y,xn,yn,1) 
call set_new_rate(xn,yn,reverserategrid(xn,yn)) 
call boundary(x,y,xn,yn,3) 
call set_new_rate(xn,yn,reverserategrid(xn,yn)) 
call boundary(x,y,xn,yn,5) 
call set_new_rate(xn,yn,reverserategrid(xn,yn)) 
call boundary(x,y,xn,yn,7) 
call set_new_rate(xn,yn,reverserategrid(xn,yn)) 
 
call set_new_rate(x,y,reverserategrid(x,y)) 
 
END SUBROUTINE update_neighbour 
 
 
update_time.f90 
subroutine update_time(ran,ratesum) 
use general_module 
implicit none 
 
real(kind=8), intent(in) :: ran,ratesum 
 
dt = -log(ran)/ratesum 
TotalTime = TotalTime + dt 
 
end subroutine 
 
 
visual.f90 
!This subroutine adds to visualisation list 
 
subroutine visual(x,y,xn,yn,addortake)  !,beta) 
use surface_module 
use rates_module 
implicit none 
 
integer, intent(in) :: x,y,xn,yn,addortake 
select case(addortake) 
 case(1) 
  write(29,*) "Add", x,y,surface(1,x,y) + 1 
 case(2) 
  write(29,*) "Take", x,y,(surface(1,x,y) + 1) + 1 
 case(3) 
  write(29,*) "Add", xn,yn,surface(1,xn,yn)+1, "Take", 
x,y,(surface(1,x,y) + 1)+1 
 case(4) 
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  write(29,*) "Take", x,y,surface(1,x,y)+1+1, "Take", 
x,y,(surface(1,x,y) + 2)+1 
end select 
end subroutine visual 
 
 
write_output.f90 
subroutine write_output() 
use general_module 
use surface_module 
use rates_module 
implicit none 
 
 
integer :: i,j,k,littlestep,step,cnt,themin,themax,thedim 
real(kind=8) :: latt,CC100dist,rmstemp,r,htmp 
integer, dimension(grid_x,grid_y) :: height_arr 
 
open(unit=11,file="surf.out")  
 
CC100dist = 0.08917 !distance between (100) layers in nm 
latt = 1.5 
themin = minval(surface(1,:,:))  
themax = maxval(surface(1,:,:)) 
height_arr =  surface(1,:,:) 
call stats(height_arr) 
write(20,*) "Min", themin 
write(20,*) "Max", themax 
write(20,*) "avergae height and rms" 
write (20,*) "Average Height" , aveheight 
write (20,*) "Roughness",rmsdh*CC100dist,"nm" 
!write(20,*) sqrt(rmstempm15.0) 
!TotalTime = TotalTime / 60 / 60 
write(20,*)"-------------------------------------------------------------" 
write(20,*) "Surface Activation Happend",  surface_Activation_Count,& 
 "times",100*real(surface_Activation_Count)/real(mcsteps) 
write(20,*) "Surface Deactivation Happend",surface_Deactivation_Count,"times"& 
,100*real(surface_Deactivation_Count)/real(mcsteps) 
write(20,*)"Adatom Activation Happend",adatom_Activation_Count,"times"& 
,100*real(adatom_Activation_Count)/real(mcsteps) 
write(20,*) "Adatom Deactivation Happend",adatom_Deactivation_Count, "times"& 
,100*real(adatom_Deactivation_Count)/real(mcsteps) 
write(20,*)"Adatom Double Activation Happend",double_Activation_Count, "times"& 
,100*real(double_Activation_Count)/real(mcsteps) 
write(20,*)"Adatom Double Deactivation Happend",double_Deactivation_Count, "times"& 
,100*real(double_Deactivation_Count)/real(mcsteps) 
write(20,*)"Adatom Triple Activation Happend",triple_Activation_Count, "times"& 
,100*real(triple_Activation_Count)/real(mcsteps) 
write(20,*)"Adatom Triple Deactivation Happend",triple_Deactivation_Count, "times"& 
,100*real(triple_Deactivation_Count)/real(mcsteps) 
write(20,*) "Migration Happend",surface_Migration_Count, "times"& 
,100*real(surface_Migration_Count)/real(mcsteps) 
write(20,*) "CH3 Adsorption Happend",adatom_Adsorption_Count, "times"& 
,100*real(adatom_Adsorption_Count)/real(mcsteps) 
write(20,*) "CH2 Adsorption Happend",CH2_Adsorption_Count, "times"& 
,100*real(CH2_Adsorption_Count)/real(mcsteps) 
write(20,*) "CH_Adsorption Happend",CH_Adsorption_Count, "times"& 
,100*real(CH_Adsorption_Count)/real(mcsteps) 
write(20,*) "C_Adsorption Happend",C_Adsorption_Count, "times"& 
,100*real(C_Adsorption_Count)/real(mcsteps) 
write(20,*) "Desorption Happend",etch_Count, "times"& 
,100*real(etch_Count)/real(mcsteps) 
write(20,*) "Beta Scission Happend",beta_Count, "times"& 
,100*real(beta_Count)/real(mcsteps) 
write(20,*) "Total = ", surface_Migration_Count + adatom_Adsorption_Count +& 
 etch_Count+surface_Activation_Count+surface_Deactivation_Count& 
+adatom_Activation_Count+adatom_Deactivation_Count+beta_Count+double_Activation_Count+& 
double_Deactivation_Count + triple_Activation_Count + triple_Deactivation_Count& 
 
+CH2_Adsorption_Count+ CH_Adsorption_Count+C_Adsorption_Count, mcsteps 
write(20,*)"-------------------------------------------------------------" 
write(20,*)  "Growth Rate (um/hr):",(CC100dist*0.001*aveheight*3600)/TotalTime 
write(20,*)  "Total Simulation time:",TotalTime,"secs" 
 
999 print *, "End of Program" 
step = maxval(surface(1,:,:)) 
step = step + 1+1 
write(20,*) step 
allocate(xyz(3,grid_x*grid_y*step)) 
cnt = 1 
xyz = 0 
do i = 1, grid_x 
  do j = 1, grid_y 
    do k = themin , themax 
      xyz(1,cnt) = i*latt 
      xyz(2,cnt) = j*latt 
      if (k < surface(1,i,j)) then 
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        xyz(3,cnt) = k*latt 
      else 
        xyz(3,cnt) = surface(1,i,j)*latt 
      end if 
      cnt = cnt + 1 
   end do 
  end do 
end do 
Open (unit = 53, file="surface.xyz") 
write(53,*) cnt-1 
write(53,*) "comment line" 
do i = 1, cnt-1 
    Write (53,*) "C",xyz(1,i),xyz(2,i),xyz(3,i) 
end do 
close(53) 
write(20,*) "Number of L-H type processes", lh, "Percentage", 100.0*real(lh)/real(lh+er) 
write(20,*) "Number of E-R type processes", er, "Percentage", 100.0*real(er)/real(lh+er) 
write(20,*) lh, er 
write(11,*) "{"  
do i = 1, grid_x  
  write(11,*) "{", height_arr(i,:),"}" 
end do 
 write(11,*) "}"  
close(11)  
deallocate(xyz) 
end subroutine write_output 
 
 
 



Activation energies and prefactors 
!H abstraction rate constant, reaction (1) : A_k1, Ea_k1 
3.2E-12,3430 
!H2 addition to surface radical rate constant, reverse of reaction (1) : A_km1, Ea_km1 
3.2e-13,7850 
!Etching 
1.33e+16,239500 
!H addition to surface radical rate constant, reaction (2) : A_k2 
9.6e-13 
A and Ea for migration (s-1 and J/mol) 
6.13e13, 128400 
!etchfactor - a percentage of the CH3 addition rate: e_factor 
0.3 
!beta-scission rate constant (Jeremy): Ea_beta 
180000



Input file for Growth simulation program 
SurfAct, SurfDeAct, Add, Etch, Ad. Act, Ad. DeAct, mig, beta 
1,1,1,1,1,1,1,1 
Random Seed (logical T/F) 
.true. 
Insertion reactions on(logical T/F) 
.false. 
model for radical site density (yuri or butler) 
yuri 
model for defect density (yuri or butler) 
yuri 
substrate temp Ts in Kelvin 
1173 
gas temp Tns near the surface in Kelvin 
1267  
H atom concentration at surface (cm-3) 
1.85E+14  
H2 molecule conc at surface (cm-3)  
1.52E+17  
CH3 conc at surface (cm-3)   s   and  g factors 
1.46E+13 , 0.5, 0.15 
CH2 conc at surface (cm-3)   s   and  g factors 
3.66E+08 , 0.6, 0.2 
CH  conc at surface (cm-3)   s   and  g factors 
2.74E+08 , 0.7, 0.25 
C   conc at surface (cm-3)   s   and  g factors 
3.37E+09 , 1.0, 0.3 
grid_x 
50 
grid_y 
50 
End Time 
51.0 
Output Time Step 
0.1 
visualisation 
.true. 
 


