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Amathematical and software implementation of a geometricalmodel of themorphology of growth in a cubic crystal
system, such as diamond, is presented based on the relative growth velocities of four low index crystal planes: {100},
{110}, {111}, and {113}. Themodel starts from a seed crystal of arbitrary shape bounded by {100}, {110}, {111} and/
or {113} planes, or a vicinal (off axis) surface of any of these planes. The model allows for adjustable growth rates,
times, and seed crystal sizes. A second implementation of the model nucleates a twinned crystal on a {100} surface
and follows the evolutionof itsmorphology.Newconditions for the stability of penetration twins on {100} and {111}
surfaces in terms of the alpha, beta, and gamma growth parameters are presented.

© 2015 Elsevier B.V. All rights reserved.
1. Introduction

Early on in the growth of diamond crystals by chemical vapor depo-
sition (CVD) it was observed that the crystal habit was bounded by the
general appearance of several low index planes [1–3]. Four crystal faces
with the following Miller indices: {100}, {110}, {111}, {113} were ob-
served under varying growth conditions [4,5]. However, close micro-
scopic examination of these planes often indicated that they were not
atomically smooth, but rather displayed steps of various heights. For
the purposes of this paper, this ‘roughness’which is likely to be impor-
tant to the local stereochemical modeling of the growth chemistry [6,7],
will be ignored in order to focus on a model of the more macroscopic
growth features. The macroscopic crystal shape observed most often
was cubo-octahedral and was described by a parameter, alpha, which
is proportional to the growth velocity of the cube face, {100}, to the oc-
tahedral face, {111} [8,9]. Only the slowest growing crystal facets are ob-
served and the relative growth rate of each facet depends on complex
factors such as the flux of reactive species to the surface, the surface
temperature, and surface structure. Hence, depending on the growth
conditions, not all facets will be observed at any given time. In 2006, a
morphological growth model which included the possibility of the
four observed faces, {100}, {110}, {111}, {113}, was introduced which
described the crystal growth morphology in terms of three parameters,
alpha, beta, and gamma, defined below [10]. The results of this model,
iy), jimbutler29@comcast.net
but not the means for computation, have been thoroughly described
in multiple subsequent papers [11–15]. The purpose of the present
paper is to present a theory behind the implementation of amorpholog-
ical growthmodel for diamond (and potentially, other cubic crystals),
demonstrate the implementation of the model in readily available
software (Wolfram Mathematica), generalize the model to off axis
cut surfaces (vicinal) of the initial seed crystal, and to extend the
model to demonstrate the morphology of a simple twinned crystal
appearing on the {100} face.

Crystal twinning is very commonly observed CVD diamond growth
[8,9,16]. Twinning usually occurs on a local {111} plane, and can have
the impact of degrading the quality of the material [16–19]. For this
reason, the model presented here has been modified to include the
nucleation of a twin crystal on the top {100} surface of a seed crystal
to show how the morphology of the twin progresses with the alpha,
beta, and gamma growth parameters. Conversely, it may be possible
to experimentally determine these parameters from the morphology
of the twinned crystal in the early stages of growth.
2. Principles of the model

Notation:
3-dimensional vectors are in bold, e.g. r = (rx, ry, rz) = (r1, r2, r3).
Four-dimensional vectors have an arrow above them, e.g. r!=(r, l).
The inner product of two vectors for any number of dimensions is

x; yh i ¼ ∑i xi yi.
The norm of a vector is ∥x∥ ¼ ffiffiffiffiffiffiffiffiffiffiffi

x; xh ip
.
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2.1. Constructing the polyhedron

The geometricmodel assumes that there are four directions of growth
in the diamond crystalwhich are normal to the four crystal faces enumer-
ated with the following Miller indices: {100}, {110}, {111}, {113}. Taking
all possible permutations and reflections of these vectors, we obtain 50
different growth vectors, collectively denoted as b100N, b110N, b111N,
b113N. Each of the vectors is normal to a plane that moves at a constant
speed away from the origin (0,0,0) (“the n plane”). For a dimensionless
normal vectorn, call the corresponding speedVn (the velocity vector itself
is Vnn̂, where n̂ is the unit vector codirectional with n).

The crystal itself is a convex polyhedron P (t),which is the intersection
of all the negative half- spaces of the 50 planes (the negative half-space of
a uniformly moving n plane at time t is the half-space covered by the
plane over the time interval (−∞,t)).

Aswewill see later, the shape of the crystal depends only on the ratios
of the speeds V100, V110, V111, V113, hence the following reduced parame-
ters are introduced:

α ¼
ffiffiffi
3

p
V100

V111
; β ¼

ffiffiffi
2

p
V100

V110
; γ ¼

ffiffiffiffiffiffi
11

p
V100

V113

If we introduce a more general and consistent notation of

αn ¼ ∥n∥ V100

Vn

then α= α111, β= α110 and γ= α113, whereas α100 = 1. Note that
Vn is invariant with respect to reflections and permutations of the axes.
We shall further refer to αn as the growth parameter of the n plane.

The equation of the n plane at time t is

r;nh i ¼ dnl0 þ ∥n∥ Vnt; r ∈ ℝ3

where dn is a dimensionless parameter which controls the initial position
of the plane (at t = 0) and l0 is taken to be the initial size of the crystal
along the x-axis. In fact, the distance from the origin to the n plane at

time t= 0 is equal to dnl0
∥n∥ .

It is now natural to introduce dimensionless normalized Cartesian
coordinates r̂, such that

r ¼ V100tr̂:

Obviously, division by t is not practical in computer calculations, but
using dimensionless coordinates makes sense in a theoretical treat-
ment. Then the equation of the n plane πn becomes

r̂;nh i ¼ dn
l0

V100t
þ ∥n∥ Vn

V100
;

which is equivalent to

πn : r̂;nh i¼2Ldn
t

þ ∥n∥2
αn

;

where L ¼ l0
2V100

:

We see that the set of parameters L, dn and αn completely control the
shape of the crystal at all times t, with L being the only parameterwith di-
mensions (L controls the scaling of the time axis and the initial size of the
crystal).

Computationally, the easiest way to specify a plane is by providing its
normal vector n and the point on that plane closest to the origin, which is
the intersection of the planewith the straight line going along n. Suppose
that this point is

r̂n ¼ 1
pn

n:

Then, from the equation of the plane,

pn ¼ t
2Ldn
∥n∥2

þ t
αn

:

Note that, although this formula does not look very simple, these
parameters are natural because

lim
t→∞

pn ¼ αn:

The numbers pn are the effective values of the growth parametersαn at
finite times. The same observation proves that the shape of the crystal
stabilizes at large times and is determined solely by the parameters
α110, α111 and α113. Moreover, independent of the initial shape of the
crystal, its shape at infinite time is always completely symmetrical
(with respect to reflections and permutations of the axes), assuming
that growth in all directions is allowed.

Finally, the initial shape of the crystal is determined by the 50 param-
eters dn.When the initial shape of the crystal contains only some of the 50
possible faces, the remaining planes have undefined values of dn. From
the perspective of crystal growth, it is natural to take such values of dn
that the corresponding planes are tangent to the initial polyhedron.

Since the slightly more convenient way of specifying a plane is
to specify any one of its points, we need a way to calculate dn
from that data. Say, we know that the plane πn contains a point
r = l0 vn at t = 0. Then, from the equation of the plane, we have

dn ¼ vn ;nh i:

The equation of the n plane for t N 0 is then

πn : r̂;nh i ¼ 2L
t

vn;nh i þ ∥n∥2
αn

;

which, when combined with our definition of pn, is equivalent to

πn : r̂;nh i ¼ ∥n∥2
pn

:

In order to make the equations even simpler, we introduce the
following 4-dimensional vectors, as is usually done in computa-
tional geometry. Instead of r̂ = (x̂, ŷ, ẑ), we take

r!¼ x̂; ŷ; ẑ; lð Þ ¼ r; lð Þ

and instead of n and pn take

n!¼ nx;ny;nz;−
∥n∥2
pn

 !
¼ n;−∥n∥2

pn

 !
:

Then the equation of the n plane is

πn : r!; n!
D E

¼ 0:

Moreover, the negative half-space Pn
− is precisely the set of all the

points r!¼ r̂; lð Þ that satisfy the inequality

P−
n : r!; n!

D E
≤0:
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This is the preferred form of these relations when computing in
Mathematica.

To find the vertices of the polyhedron that is the intersection P(t) =
∩ nPn

−(t), one has to find all the intersections of all the 3-tuples of the
planes πn and select only those points that satisfy the last inequality
for all vectors n.

2.2. Vicinal surfaces

Each of the n planes can be chosen to be a “vicinal cut”, i.e. a slightly
tilted plane relative to the original normal vector n. In our model, such
an inclination is described by two angles, 0 b θ b π and 0 ≤φ b 2π,
which correspond to the standard spherical angles in a reference frame
where n is directed along the z-axis. The angle θ is generally restricted
to small values of nomore than a fewdegrees. Let us call the tilted normal
vector nθ,φ. According to the experimental data, such faces of a crystal can
grow at a somewhat higher speed than Vn. Therefore we include in our
model four additional parameters mn N 1 for n = (100), (110), (111),
(113), called “vicinal cut speed multipliers”, defined through

Vnθ;φ
¼ mnVn:

After setting the angles of all the vicinal surfaces, one can specify
the initial shape of the crystal using the same parameters dnθ;φ , which
describe the distance of a given plane to the origin. The original n planes
are automaticallymoved so that they are tangent to the initial polyhedron
at t=0. After some finite time, all the vicinal surfaces are “outgrown” by
the n planes (assuming that the values of θ are small enough).

2.3. Growth parameters changing with time

2.3.1. Naive approach
Suppose that the growth speeds Vn change with time. Then put

αn ¼ ∥n∥ V100 0ð Þ
Vn tð Þ :

The initial equation of the n plane becomes simply

r;nh i ¼ dnl0 þ ∥n∥
Zt
0

Vn τð Þdτ:

After we introduce new coordinates r ¼ V100 0ð Þtr̂ and L ¼ l0
2V100 0ð Þ

this becomes

r̂;nh i ¼ 2Ldn
t

þ ∥n∥2
t

Zt
0

1
αn τð Þdτ:

Comparing this with r̂;nh i ¼ ∥n∥2
pn

we find that

pn ¼ t
2Ldn
∥n∥2

þ
Zt
0

1
αn τð Þdτ

0
@

1
A−1

:

Once again, if there is a limit

lim
t→∞

αn ¼ αn ∞ð ÞN0;

then

lim
t→∞

pn ¼ αn ∞ð Þ:
Like before, the equations of the planes are

πn : r̂;nh i ¼ ∥n∥2
pn

:

2.3.2. System of integral equations
Unfortunately, the “naive” derivation performed above is not

very useful in the computational model described earlier. The prob-
lem is that after each change of the growth parameters all planes
need to be moved so that they are tangent to the polyhedron P (t)
(a plane is left invariant by this transformation if it already produces
a face of P (t)). And if the parameters are changing continuously, this
turns the system of (at most) 50 independent algebraic equations
into a system of 50 intertwined “integro-differential procedures”,
where the calculation of P (t) requires the knowledge of its history
over some past time interval (t − δt,t).

More precisely, for the polyhedron P (t), definewn (P (t)) as a vertex
of P (t) that is closest to the plane πn (t) (and thus lies in that plane).
Then the instantaneous velocity of this vertex is completely determined
by the three faces it belongs to. Let us call the normal vectors of these
faces ni = (nix, niy, niz), i = 1, 2, 3 (keep in mind the dependence of
these on n). Note that, in general, the set of vectors ni for a given
plane πn changes with time. Then the velocity vector V(P(t); n, t) =
(u1, u2, u3) of the point wn, which depends on time explicitly through
the speeds Vni (t) as well as implicitly through the shape of P (t), is the
unique solution of the simple linear system

n1x n1y n1z
n2x n2y n2z
n3x n3y n3z

0
@

1
A u1

u2
u3

0
@

1
A ¼

∥n1∥
2Vn1

tð Þ
∥n2∥

2Vn2
tð Þ

∥n3∥
2Vn3

tð Þ

0
BB@

1
CCA:

If we denote the matrix on the left-hand side by N(P(t); n), then

V P tð Þ;n; tð Þ
V100 0ð Þ ¼ N P tð Þ; nð Þ−1

∥n1∥2
�

αn1
tð Þ

∥n2∥2
�

αn2
tð Þ

∥n3∥2
�

αn3
tð Þ

0
BBBBBBBB@

1
CCCCCCCCA
:

Since there is only a finite number of possible combinations of
normal vectors ni, the speed V is always expressed in terms of αni

(t) in one of a finite number of ways. If the projection of V(P(t);
n, t) on the n direction is less than Vn (t), then the n plane has to
move along with the vertex wn. Otherwise, the n plane starts pro-
ducing a new face, thus, “splitting” the old vertex wn into several
new vertices, whose speed along n is equal to Vn (t). With this in
mind,

b r;n N ¼ dnl0 þ
Z
0

t

min 〈V Pðτð Þ; n; τÞ;n〉; ∥n∥ Vn τð Þ
� �

dτ;

which is equivalent to

πn : b r̂;n N ¼ 2Ldn
t

þ 1
t

Z
0

t
min

V P τð Þ;n; τð Þ
V100 0ð Þ ;n

� �
;
∥n∥2
αn τð Þ

( )
dτ:

Obviously, this equation of the n plane requires knowledge of the
whole history of P (τ), i.e. of all the planes πn (τ), for τ b t. From the
mathematical point of view, this is a system of integral equations
on 〈r̂;n〉 tð Þ for all n. Alas, the extremely implicit form of the equa-
tions makes it very difficult to analyze them or even suggest a com-
putational method of solving them.
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The simplest example of such behavior iswhenVn are piecewise con-
stant functions of time. Put t0= 0 and suppose that ti for i=1, 2, . . . are
the points of jumps for all the functionsVn (t) and henceαn (t). Thenwe
would only have to find theminimum in (3) for t= ti, i.e. the integrand
in (3) is piecewise constant on the same intervals. In fact, the evolution
of the crystal P (t) between the jump points ti is correctly described by
the equations of the form (1): at each point ti, the constructed polyhe-
dron P (ti) is taken to be the initial polyhedron for the next evolution in-
terval (ti,ti + 1) with the new values of the growth parameters.

3. Implementation of the model

3.1. Software

Themodel was implemented usingWolframMathematica version 9
to create an executable CDF file, DCVDVicinal.cdf, which can be used
with Wolfram CDF reader (version 9.0.1.0, free download). The cubic
initial shape implies that each of the 50 planes has to include at least

one of the vertices of the cube with side l0, i.e. the eight points l0
2

1;1;1ð Þ , l0
2 −1;1;1ð Þ , …, l0

2 −1;−1;−1ð Þ: Therefore dn ¼ 1
2

nx þ ny þ nz
� 	

with n = (nx, ny, nz). The values of pn are found from
the condition that r̂n lie in πn:

p100 ¼ t
Lþ t

; p110 ¼ t

Lþ t
α110

; p111 ¼ t

Lþ t
α111

; p113 ¼ t
5
11

Lþ t
α113

:

Fig. 1. An example of the c
Upon initialization of the CDF file, you are presentedwith threemain
interactive areas: the 3D model, the type diagram and the 2D section
view. The two latter areas are fully integrated into the first one, thus
will not need a detailed description.

When the initial polyhedron P (0) is not a cube, only a little modifica-
tion to the algorithm is needed. However, all the computations become
significantly slower due to reduced symmetry.

Themain difference from the cubic case is that nowwe have to find a
way to automatically find such values of dn that all the planes are tangent
to the initial polyhedron (at least at t= 0). To do that, for each n simply
find a vertex v of P (0) closest to the n plane, i.e. which minimizes the
value of |〈v, n〉|. Then reset the value of dn to 〈v, n〉.

3.2. Interface

When you open the CDF file, the initial 3D view is an orthogonal pro-
jection along the z axis. This is displayed in Fig. 1. You can rotate the
graphics interactively at any time with the mouse pointer on the right
hand side of the screenholdingdown the left button. Values of theparam-
eters that are controlled by sliders on the left side of the screen and values
can be enteredmanually by clicking the tiny “+” button to the right of the
corresponding slider. There is a general zoom control in the bottom right
corner of the window. If the setting “Use sizes relative to l0” is turned on,
the coordinates of the points shown in the Mathematica 3D model at
finite times are

tr̂
2L

¼ r
l0
;

df interface window.

Image of Fig. 1
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i.e. relative to l0. The setting “Draw a box with axes” enables the framed
interface for the 3Dmodel. The “Opacity” slider controls the transparency
of the faces of the polyhedron (note that it does not change the transpar-
ency of the section face and growth sectors on it). Next, we outline the
main controls available on the left side of the simulation interface.

3.2.1. Initial shape
The initial shape of the single crystal seed can be designed by the con-

trols on the left side of the screen. “Reference size l0 (mm)” sets a distance
in millimeters, which is then used in the calculations instead of l0, as
outlined in the first section. It is recommended that the size of the sub-
strate does not exceed 2 l0.

“Move/tilt a plane” lets you choose any of the moving planes πn
(0) at time t=0. The following three sliders control the initial position
and inclination of these planes with respect to their normal vectors.

“Distance (unit = l0)” sets the distance from the origin to the plane
πn at t=0. Values relative to l0 are used so that the initial shape is inde-
pendent of l0.

“θ (deg)” and “φ (deg)” are the two standard spherical angles of the
coordinate system in which the z-axis is directed along n. Introducing
a nonzero θ, one can specify a vicinal face associated with n. Note that
for the vicinal surfaces, the “Distance (unit = l0)” slider specifies the
distance from the origin to the new inclined plane.

Fig. 2 displays several examples of initial seed shapes.
“Opacity” controls the transparency of the faces of the polyhedron.

3.2.2. Growth settings
“t = ∞” sets the time to infinity and the polyhedron shown on the

right-hand side is the ultimate shape.
“Time of growth (hrs)” sets the time t in hours at which the polyhe-

dron P (t) is calculated.
“V100 (mm/h)” sets the value of the growth speedV100 inmillimeters

per hour.
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Fig. 2. (a) Top gray face (001), bounded on the sides by gray (100), (010), (-100), (0-10), and
(100), (010), (-100), (0-10); (c) top gray face (001), bounded on the sides by gray (100), (010
direction of (1-10), bounded on the sides by gray (100), (010), (-100), (0-10), and pink (1-10
“α”, “β”, “γ” are the three main growth parameters defined in the
first section.

The four sliders “Vicinal cut Vnmultiplier” control themultipliersmn

for n = (100), (110), (111), (113) as described in Subsection 2.2.
Fig. 3 displays a example of the evolution of the growth for a particular

seed shape and growth parameter settings.

3.2.3. Section settings
It is possible to view the growth sectors inside the crystal in the form

of their traces on the section pane

x ¼ l0c:

Note that each section comprises many thin colored polygons, there-
fore itmay appear transparent if their number is too low. Eachof the poly-
gons is the section of the polyhedron P (τ) at some point in time τ
between 0 and t with its edges colored in agreement with the colors of
the faces they were in. Note that there is always equal amount of time be-
tween two neighboring polygons. There may be a hole in the middle of
the section. It corresponds to the case when the section plane has a nor-
mal vector which coincides with one of the normal vectors of the polyhe-
dron and thus the corresponding face of the crystal “hits” the section
plane at some positive time t0, therefore giving the nonzero size of the
earliest nonempty section.

The “Cut at time t” checkbox enables the section mode.
The “Draw gray section face” checkbox controls the visibility of the

gray face that is drawn behind the section polygons. Enabling this option
is recommended if the section plane looks transparent and you do not
want to increase the number of polygons.With this setting on it is recom-
mended to turn up the “Opacity” setting to 1 to avoid clipping.

The three sliders “Cut normal nx,y,z” specify the normal vector of the
cutting plane.

“Cut plane distance from 0” changes the position of the cutting plane.
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), (-100), (0-10), and pink (1-10), (-1-10); (d) vicinal off axis top face 3° off (001) in the
), (-1-10).

Image of Fig. 2
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Fig. 3. Evolution of the seed shown in Fig. 2(d) for alpha=1.9, beta=1.1, gamma=4, growth rate 30 μmper hour, vicinal cut V100multiplier of 1.4, and for growth times of (a) 0 h, (b) 2 h,
(c) 4 h, (d) 6 h, (e) 20 h, and (f) 100 h.
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“Preview quality” sets the number N0 of section polygons that are
drawn while the control sliders are being dragged.

“Number of steps” sets the number N of section polygons that
are drawn after all the control sliders are released. While this slider
is dragged, the 3D model is not updated interactively. Note
that choosing high values of N can dramatically increase the
render time of the model after any change is made to the growth
parameters.

“tMin for section” sets themoment tmin such that the interval (tmin,t)
is divided into N (or N0) equal segments and there is one section poly-
gon calculated for each of the segments (including the empty sections).

Fig. 4 displays examples of sections thru the grown crystal.
2

0.0
0.2
0.4

z

Fig. 4. A cut through the crystal of Fig. 3(f), normal to (001) at a di
4. Twin morphology

This section will explore the morphology of a twinned crystal
nucleating on a {100} surface, a ‘penetration twin’. The develop-
ment of the morphology of a twin in a diamond crystal is imple-
mented in a separate CDF model, DCVDtwin.cdf. In this model, a
twin is nucleated on the (100) surface, and then all the exterior
surfaces of the twin and original seed are evolved according to
the alpha, beta, and gamma growth parameters. A twin can form
on a 100 face of the crystal and grow from zero size as an indepen-
dent completely symmetric crystal. The axes of this crystal are
rotated through 60° about the 111 axis. The center of the twin can
20

x

2

0

2

y

stance of 0.5 from the origin showing various growth sectors.

Image of Fig. 3
Image of Fig. 4
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be positioned at any point (x, y, z) with the help of the
corresponding sliders.

The twin is stable (is not overgrown by the parent crystal) on a {100}
if and only if the following conditions are met

0 b α ≤ 5
3

0 b β ≤ 5
3

0 b γ ≤ 11
3

8>>>>><
>>>>>:

; or

5
3

b α ≤ 2

0 b β ≤ 2α
3 α−1ð Þ

0 b γ≤ 11
3

8>>>>><
>>>>>:

:

These conditions were determined analytically by finding all the
points of intersection among all the planes and analyzing when each
of them is a vertex of the twin and its speed in the appropriate direction
is more than V100.

Themain limitation of ourmodel is that the twin has to be sufficiently
far away from other faces of the main crystal at all times. Otherwise, the
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Fig. 5. Examples of the morphology of penetration twins on the 100 surface as a function of (α
diamond growth.
model acquires an inherent non-convexity, which cannot be accounted
for by the computational methods used in the model.

It is important to note that the original conditions for the stability of a
penetration twinon a {100} surface [8,9],α b 2,was determined inmodels
only considering {100} and {111} surfaces, and now needs to bemodified
to the conditions above. This can now explain the observation of the lack
of penetration twins in homoepitaxial single growthwhenα=1.8 (Fig. 1
in ref. [12]).

Experimentally, the values reported forα,β , andγ inmicrowave plas-
ma CVD of single crystal diamond growth are in the range [11–13,20]

1:5 ≤ α ≤ 2:5

0:8 ≤ β ≤ 1:1

3 ≤ γ ≤ 7:1:
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; β; γ) for some values of the parameters typical of microwave plasma CVD single crystal
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We present in Fig. 5 the morphology of an isolated penetration twin
on the {100} surface for a few values of α, β, and γ in the range listed
above.

We have also analytically determined the stability conditions for a
penetration twin growing on a {111} surface in the same manner used
above. The conditions for a stable penetration twin on a {111} surface are:

3
2
≤ α ≤ 9

5
0 ≤β ≤ 4α

9−3α
0 ≤ γ ≤ 11α

9−2α

8>>>>><
>>>>>:

; or

α ≥ 9
5

0 ≤ β ≤ 10α
9

0 ≤ γ ≤ 55α
27

8>>>>><
>>>>>:

And for a contact twin on a {111}, the conditions are the same as for
the existence of {111} surfaces:

α≥1

0 ≤ β ≤ α

0 ≤γ ≤ 11
5

α

We have not yet implemented a specific cdf program to show the
morphology of the penetration twin on {111}, but hopefully this will
be available by the time of publication.

5. Conclusion

A geometric model of growth of a cubic crystal has be implemented
in readily available software. New conditions for the stability of penetra-
tion twins on {100} and {111} surfaces have been determined.

Such modeling has value in designing growth conditions optimized
to particular properties. For example, the incorporation of impurities,
dopants, and the formation of structural defects depends on the local
surface structure. Each of the low index planes in themodel has a differ-
ent stereochemical structure and thus the bulk material grown under a
particular low index surface (often referred to as the ‘growth sector’)
will have different physical properties reflecting the local defects and
impurities in the growth sector. For example, the b111N growth sectors
in CVD grown diamond materials show high dislocation densities [18,
19], twin formation [16,17], and impurities such as phosphorous incor-
poration [21]. The b110N growth sectors are reported to have high
stress [14]. These differingphysical properties can cause strain, cracking,
color and wear gradations, and variations in a host of other physical
properties. Hence, knowledge of the impact of the alpha, beta, and
gamma growth parameters on the growthmorphology by using growth
modeling, is useful in selecting the growth conditions for the desired
product.

Prime novelty statement

A geometric model of cubic crystal growth based on the relative
growth velocities of the {100}, {110}, {111}, and {113} crystal planes is
implemented in a readily available (free) software. The mathematical
foundation for the models is provided and implemented in two pro-
grams. The first, DCVDVicinal.cdf, presents the evolving morphology of
crystal growth from a seed bounded by {100}, {110}, {111} and/or
{113} planes and includes the option for a vicinal (off axis) surface.
The second, DCVDtwin.cdf, presents the evolution of a twin formed on
the surface of a {100} plane. New conditions for the stability of
penetration twins on {100} and {111} surfaces in terms of the alpha,
beta, and gamma growth parameters are presented.
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