Boron doping: B/H/C/O gas-phase chemistry; H atom density dependences on pressure and wire temperature; puzzles regarding the gas-surface mechanism

Yuri A. Mankelevich a,⁎, Michael N.R. Ashfold b, Dane W. Comerford b, Jie Ma b, James C. Richley b

a Skobeltsyn Institute of Nuclear Physics, Moscow State University, Moscow 119991, Russia
b School of Chemistry, University of Bristol, Bristol, BS8 1TS, UK

Available online 1 February 2011

Abstract

Experimental and modeling studies of the gas-phase chemistry occurring in dilute, hot filament (HF) activated B2H6/CH4/H2 gas mixtures appropriate for growth of boron-doped diamond are reported. The results of two-dimensional modeling of heat and mass transfer processes and the B/H/C chemistry prevailing in such HF activated gas mixtures (supplemented by reactions involving trace O2 present as air impurity in the process gas mixture) are discussed and compared with measurements of B atom densities as functions of hot wire temperature T w and distance from the wire. Most of the B2H6 molecules that diffuse from the cool, near-wall regions into the hot, near wire region are thermally decomposed (yielding two BH3 molecules as primary products) and then converted into various ‘active’ B-containing species like B, BH and BH2 – some of which are able to accommodate into the growing diamond film. H-shifting reactions BHx + H ↔ BHx−1 + H2 enable rapid inter-conversion between the various BHx (x = 0–3) species and the BHx source is limited by diffusional transfer of B2H6. H atoms play several key roles – e.g. activating the process gas mixture, and driving inter-conversions between the various HxBxC3Oy species. We show that the T w and gas pressure dependences of the H atom production rate (by H2 dissociation on the HF surface) can be accommodated by a simple gas-surface reaction model.

1. Introduction

Hot-filament (HF) activation of dilute hydrocarbon/H2 (e.g. CH4/H2) gas mixtures is an established low-cost route for diamond chemical vapour deposition (CVD) [1–3]. Addition of trace amounts of a boron containing precursor (e.g. 10–1000 ppm of B2H6) during diamond CVD is of considerable interest, as incorporated B atoms act as acceptors (Ea ≈ 0.37 eV) and impart p-type semiconductivity to the as-grown B-doped diamond [4]. B-doped diamond is attracting interest for its potential application in electronic and optical devices [5,6], bio-sensing [7], and as a result of its more recently discovered superconductivity [8,9]. All such applications require reliable recipes for forming high quality B-doped diamond, with controllable doping levels; hence the emerging need for a much fuller understanding of the doping processes and of the B/H/C chemistry. However, the details of the gas-phase and gas-surface chemistry involved in the growth of B-doped CVD diamond are still poorly understood. The literature contains only a handful of papers reporting diagnostics relevant to B-containing microwave (MW) plasmas, though several studies have sought to establish relationships between diamond film quality, dopant concentration and reactor parameters such as the B2H6 flow rate (or the input [B]/[C] ratio), substrate temperature, etc. [10–12]. We have embarked on combined experimental and theoretical studies of the B/H/C chemistry prevailing in both HFCVD [13] and MW plasma enhanced (PE) CVD reactors [14,15]. The experimental part of the HFCVD project has involved use of resonance enhanced multiphoton ionization (REMPI) techniques to measure spatially resolved relative number densities of B (and H) atoms – henceforth represented as [B], [H], etc. – as functions of process conditions (e.g. the hot wire material, and its temperature T w, gas pressure p, the B2H6/H2 mixing ratio, and the presence (or not) of added CH4) [13]. The complementary modeling builds on previous analyses of CH4/H2 [3,16–18], CH4/NH3/H2 [19], B2H6/H2 and CH4/B2H6/H2 [13] gas-phase and gas-surface chemistry in HFCVD reactors. One of the challenges of the present study is to determine the important reaction pathways (with known and/or assumed rate coefficients) in B/C/H gas mixtures under typical HFCVD reactor conditions. Our recent studies of B/H/C chemistry in a MW PECVD reactor [14,15] showed that trace amounts of O2 impurity (air leakage, impurity in source gas) present at concentrations comparable to the B2H6 concentrations typically used in B-doped diamond CVD can have a major effect on the BH2 concentrations – hence the need to establish the much more complex, four component, B/H/C/O chemical mechanism.

2. Modeling of HFCVD reactor processes in B/H/C/O mixtures

To start the study of B/H/C/O chemistry in HFCVD reactors one first needs to be able to describe the processes involved in diamond
deposition from conventional (e.g. 1%CH₄/H₂) mixtures, i.e. proper treatments of the catalytic dissociation of H₂ on the HF surface, the H/C gas-phase chemistry, the gas temperature (T_gas) and species concentration distributions, diamond growth models, etc. Then one needs to collect and analyze scarce data on B/H/O chemical kinetics and thermochemistry from previous studies under conditions that, as a rule, are far from the typical HFCVD conditions. These include combustion studies of boranes (B₄H₈) in the search for high-energy fuels [20–22], studies of MW PECVD reactors [14,15,23,24], theoretical studies of various BₓHₙ, BₓHₙOₓ species, their structures and reactions with H, H₂, H₂O and CₓHᵧ species [20–22,25,26], and BₓHₙ dissociation studies (in BₓH₈ and BₓHₙ/H₂ mixtures) [27]. Below we describe the main stages of our model development.

2.1. Catalytic H₂ dissociation on HF surface

H atoms play a crucial role in activating the process gas mixtures and initiating the various inter-conversions within and between the CHₓ and CₓHᵧ families (and BₓHₙCₓOₓ species in B/H/C/O mixtures). Previous theoretical [16,18,28,29] and experimental studies have explored H atom densities (as functions of process parameters) by, for example, REMPI [3,13], laser induced fluorescence [30], third-harmonic generation [31], and calorimetric studies of the filament power balance to establish the fractions of supplied electrical power expended through radiation, conduction and catalytic H₂ dissociation [18,32,33]. Such studies have shown that the distribution of H atom densities under typical HFCVD reactor conditions (e.g. p=10–50 Torr, T_w=2300–2700 K) is largely established by the balance of production (H₂ catalytic dissociation on the HF surface), loss (both recombinaction on the cold reactor walls, substrate, substrate holder, and consumption in gas-phase reactions) and diffusional transfer. The H atom source term should be well described as a function of process parameters like p and T_w, but various aspects of the dissociation mechanism and measured dependences remain unclear. For example, the input powers required to maintain the hot wire at a given T_w appear to saturate at p(H₂) ~ 10–20 Torr, as do the measured H atom concentrations (which thereafter remain flat or even decline slightly upon increasing p~100 Torr) — in marked contradiction with expectations based on the ~5-fold increase of the number of collisions between H₂ molecules and the HF surface and the ~5-fold decrease in the diffusional coefficient (D~1/p) [18]. In addition, T_w dependent measurements of the effective enthalpy for forming H atoms return a value, ΔH ~2.45 eV, that is much lower than the H₂ bond strength [18]. In an attempt to explain such apparent paradoxes, we recently proposed a self-consistent approach based on analytical distributions of T_gas and H atom concentrations in the immediate proximity of the HF, and a simple gas-surface model based on two effective (and reversible) chemisorption/desorption reactions:

S* + H₂→SH + H, \(k_1 = 1.5 \times 10^{-11} \text{cm}^3\text{s}^{-1} \) exp(−10440/T_w). \((1) \)

SH→S* + H, \(k_2 = 2.85 \times 10^{-11} \text{cm}^3\text{s}^{-1} \) exp(−41780/T_w). \((2) \)

S* and SH are the active (free) and H-terminated sites on the HF surface, respectively, [S]=[SH]+[S*] is the total surface site density per unit area, T_gas=d=[S*](d=0) is the gas temperature adjacent to the hot wire surface, d is the distance from the HF, and kᵢ are the rate coefficients adopted in [18] for a bare Ta wire. This approach affords a consistent description of all of the experimental observations, and the measured trends upon varying p and T_w. In particular, the saturation of the catalytic source term Q [cm⁻² s⁻¹] (where Q is the number of H atoms produced per second per unit area of hot surface, i.e. Q=2(R₁−R₋₁)=2(R₂−R₋₂) in terms of reaction rates Rᵢ (i = 1, 2) [18]) and of the H atom densities measured a few mm from the HF surface are explained by the appropriate drop of the free site fraction [S*]/[S] — as can be seen in Fig. 1, which illustrates results from [18] for the case of a bare Ta wire at T_w=2440 K in H₂ gas. This plot also highlights the sensitivity of the [H][d=2 mm]/[H] (d=0) ratio to p(H₂): the observed saturation of the H atom density measured a few mm from the HF surface does not imply a similar saturation for the H atom concentration at d=0. This effect, which is induced by the very steep gradients in T_gas and [H] near the HF [18] and the decline in the diffusion coefficient with p (D∝1/p), illustrates a limitation of using H atom concentrations measured near the HF as a proxy for the H atom densities at the HF surface itself when varying p(H₂): such an assumption introduces a ~200% error in the [H][d=2 mm]/[H](d=0) ratio across the range 20<p(H₂)<100 Torr. The catalytic source term Q is an important parameter for the 2D/3D models discussed below.

2.2. 2D/3D models of HFCVD reactor processes

Another important element in our theoretical studies is the development of 2D(r,z) and 3D(x,y,z) models to describe (i) activation of the reactive mixture (e.g. gas heating, catalytic H atom production on the HF and, in the present case, loss of gas-phase boron by incorporation at the HF surface), (ii) gas-phase processes (heat and mass transfer, and chemical kinetics), and (iii) gas-surface processes at the substrate. The models involve the conservation equations for mass, momentum, energy, and species concentrations, together with appropriate initial and boundary conditions, thermal and caloric equations of state. These equations are integrated numerically to yield spatial distributions of T_gas and, in the case of H/C gas mixtures, the various HₓCᵧ species (H, H₂, CₓHᵧ (x=0–4), CₓHᵧ(y=0–6)) densities. The calculated results for different reactor parameters succeed in reproducing a wealth of data and trends observed experimentally [3,16–19]. For the present study of B-doped diamond deposition, the chemical mechanism was necessarily expanded to incorporate the B/H/C/O mechanism described below.

Most of the calculations in the present study employed the computationally less time consuming 2D(r,z) model and base conditions as follows: p=20 Torr, substrate temperature T_sub=1073 K, flow rates F(CH₄)=1 standard cm³ per minute (scm), F(H₂)=99 scm, F(B₂H₆)=0.0475 scm, and T_w values of 2073, 2300 and 2573 K. The reactor is represented in cylindrical coordinates, with z parallel to the direction of gas flow. The modeling considers a part of the Bristol HFCVD reactor (a chamber based on a six-way cross). The model reactor volume was bounded in the radial and vertical directions by, respectively, 0<r<25 mm and −10 mm<z<30 mm, with the point (0,0) defining

Fig. 1. Plot illustrating the calculated p(H₂) dependencies of the catalytic H atom production rate Q, the free site fraction [S*]/[S] and the [H][d=2 mm]/[H](d=0) ratio for a bare Ta HW at T_w=2440 K.
the center of the substrate. The assumed cylindrical location and representation of the experimental Ta (Re) HF (0.250 mm diameter, 7 turns with coil diameter ~3 mm and coil length ~8 mm, providing a geometrical hot surface area \(S_{\text{hot}} \approx 0.57 \text{ cm}^2 \)). In the model, the HF volume was confined within the cylinder \(r \approx 2 \text{ mm}, 10 < z < 13 \text{ mm} \). The temperature drop \(\Delta T = T_w - T_{\text{gas}} (d = 0) \approx 250 \text{ K} \) between the HF surface and the immediate gas phase was estimated using the Smoluchowski formula and an \(H_2 \) accommodation coefficient \(-0.3 \pm 0.4\) [34]. Estimates for the catalytic \(H \) atom production rates \(Q(T_{\text{gas}}) \) per \(\text{cm}^2 \) of the HF surface were taken from previous data [13,18,19], yielding the effective enthalpy \(\Delta H = 2.18 \text{ eV} \) for borodized Ta (i.e. TaB) wires at \(T_w > 1500 \text{ K} \) [35]. \(H \) atom production rates \(Q(T_{\text{gas}}, \text{TaB}) = -9 \times 10^{-18}, 3 \times 10^{-19} \) and \(4.85 \times 10^{-19} \text{ cm}^{-2} \text{ s}^{-1} \) were used here for borodized Ta wires at \(T_w = 2073, 2300 \) and \(2573 \text{ K} \), respectively, and \(Q(T_{\text{gas}}, \text{TaB}) = Q(T_{\text{gas}}, \text{Ta})/2 \) for carburized-borodized Ta wires in \(\text{B/H/C} \) mixtures. The substrate and substrate holder located at \((r < 1 \text{ mm}, -10 < z < 0 \text{ mm}) \) in the present modeling was chosen to have minimal radius (i.e. 1 mm, which is the grid cell size in both the \(r \) and \(z \) directions) simply to retain the possibility of calculating species densities just above the substrate surface \((r < 1 \text{ mm}, z = 0)\) and thus to compare with the \(B \) atom profiles measured experimentally in the absence of any substrate and substrate holder. The regions \((r < 3 \text{ mm}, z = 30 \text{ mm})\) and \((23 < r < 25 \text{ mm}, z = -10 \text{ mm})\) define the gas inlet and outlet positions in the model, \(T_{\text{sub}} \) was kept constant (at 1073 K) and \(T_{\text{gas}} \) at the reactor walls was set to 300 K.

2.3. \(\text{B/H/C/O} \) chemical mechanism

The available chemical and thermochemical data for \(B \)-containing species together with our recent thorough experimental and theoretical study of MW activated \(\text{B}_2\text{H}_6/\text{Ar}/\text{H}_2 \) [14] and \(\text{B}_2\text{H}_6/\text{CH}_4/\text{Ar}/\text{H}_2 \) [15] plasmas used for CVD of \(B \)-doped diamond have allowed development of a \(\text{B/H/C/O} \) chemical mechanism and its testing on a variety of \(\text{plasmas used for CVD of B-doped diamond} \). Brieﬂy, the absolute column densities of ground state \(B \) atoms, electronically excited \(H(n = 2) \) atoms, and \(\text{BH}, \text{CH} \) and \(C_2 \) radicals in MW activated \(\text{B/H/C/Ar} \) plasmas have been determined by cavity ring down spectroscopy, as functions of process conditions. Optical emission spectroscopy has also been used to explore variations in the relative densities of electronically excited \(H \) atoms, \(\text{H}_2 \) molecules and \(\text{BH}, \text{CH} \) and \(C_2 \) radicals. These experimental data have been complemented by extensive 2D(\(r,z) \) modeling of the plasma chemistry, and have enabled substantial reﬁnements to the existing \(\text{B/H/C/O} \) thermochemistry and chemical kinetics. The combined experimental/2D modeling study indicates that deposition of \(B \)-containing material on the reactor walls (mainly from \(B \) atom adsorption, with some participation from \(\text{H}_2\text{O} \)) becomes progressively less important at higher \(F(\text{CH}_4) \) [15]. \(\text{B/H/C/(O)} \) coupling reactions are deduced to play important (but still incompletely understood) roles in determining the local \(\text{BH}_x \) \((x = 0 \pm 3)\) number densities. Most (75–80%) of the \(\text{BH}_x \) in the input gas mixture is efﬁciently dissociated in the hot plasma and near plasma regions, at gas temperatures \(T_{\text{gas}} > 1000 \text{ K} \) [15]. The resulting \(\text{BH}_x \) species undergo further processing, and much of the boron is deduced to be stored as more stable \(\text{H}_2\text{B}_x\text{C}_y \) reservoir species like \(\text{HBO, H}_2\text{B}_6\text{O}_y \text{C}_z \), and, particularly, \(\text{CH}_2\text{BHB}_2 \) and \(\text{CH}_2\text{CHB}_2 \). The spatial proﬁles of the various \(\text{BH}_x \) species reﬂect the complex balance of diffusional transfer and inter-conversions between the various families of \(B \)-containing species in the different local environments \((T_{\text{gas}}, \text{H}, \text{H}_2\text{O}, (\text{C}_2\text{H}_4), \text{etc.}) \). Key conversions in the mechanism proposed here include \(\text{BH}_x \leftrightarrow \text{H}_2\text{BC}_y \) (involving \(\text{C}_2\text{H}_2 \) and \(\text{C}_2\text{H}_2 \)) and \(\text{BH}_x \leftrightarrow \text{H}_2\text{BO} \leftrightarrow \text{H}_2\text{COBH}_2 \leftrightarrow \text{BH}_x \) (via reactions with, or activation by, \(\text{H}_2\text{O}, \text{CH}_2 \) species and/or \(H \) atoms).

These reduced \(\text{B/H/C} \) and \(\text{B/H/C/O} \) mechanisms were embedded in the existing 2D(\(r,z) \) and 3D(\(x,y,z) \) models of a HFCDV reactor to determine the important reaction pathways under typical HFCDV reactor conditions. The \(\text{B/H/C} \) chemical kinetics mechanism employed includes 112 direct and reverse reactions for 23 species \(\{\text{H, H}_2, \text{CH}_4, (x = 0 \pm 4), \text{C}_2\text{H}_4(y = 0 \pm 6), \text{BH}_x(x = 0 \pm 3), \text{B}_3\text{H}_7, \text{CH}_2\text{BHB}_2, \text{and} \ \text{CH}_2\text{CHB}_2 \} \). As mentioned above, trace amounts of \(\text{O}_2 \) impurity (from air leakage, and/or as an impurity in the source gas) at number densities comparable to the typical \(\text{B}_2\text{H}_6 \) concentrations can have a serious impact on the \(\text{BH}_x \) species concentrations. To trace such effects of oxygen, additional conversions involving \(\text{HBO, H}_2\text{BO, O}_2, \text{O}, \text{OH, H}_2\text{O, CO, H}_2\text{O}, \text{H}_2\text{CO, H}_2\text{CCO, x = 1 2, and} \ \text{H}_2\text{COBH}_2 \ (x \leq 3) \} \) species have been introduced in the full \(\text{B/H/C/O} \) chemical mechanism, which includes 276 direct and reverse reactions.

3. Calculated results: \(\text{B/H/C/(O)} \) chemistry in HFCDV reactor conditions

All aspects of the deceptively simple HFCDV reactor processes described above were incorporated in the 2D(\(r,z) \) model for simulating the \(B \)-doped diamond deposition process. Armed with such a model, we can predict spatial distributions of hydrogen, hydrocarbon and \(B \)-containing species in the Bristol HFCDV reactor, for comparison with measured \(B \) atom proﬁles and their dependence on \(T_w \), distance \(d \) from the HF and \(\text{CH}_4 \) fractions (0 or 1%). The observation that \([B] \) doubles when \(F(\text{CH}_4) \) was reduced to zero forced us to introduce an additional diborane dissociation channel involving

Fig. 2. Calculated 2D(\(r,z) \) distributions of a) the \(T_{\text{gas}} \) (left half-panel) and the \(H \) atom mole fraction \(X_{\text{H}} \), and b) the \(B \) atom (left half-panel) and \(\text{B}_2\text{H}_6 \) concentrations for 0.0475%B\(_2\text{H}_6/1\%\text{CH}_4/\text{H}_2 \) mixture, \(T_w = 2300 \text{ K} \) and \(p = 20 \text{ Torr} \). The substrate holder and the HW volume (rectangular mesh at the image center) assumed in the modeling are indicated also. The model reactor volume was bounded in the radial and vertical directions by, respectively, \(0 < r < 25 \text{ mm} \) and \(-10 < z < 30 \text{ mm} \), the point \((0,0)\) is the center of the substrate.
reaction with H atoms, i.e. $\text{B}_2\text{H}_6 + \text{H} \rightarrow \text{B}_2\text{H}_5 + \text{BH}_3 + \text{H}$. The total BH_3 decomposition rate was thus described as follows,

$$\text{B}_2\text{H}_6 + \text{M} \rightarrow \text{BH}_3 + \text{BH}_2 + \text{M}.$$

\[k\] = \[4.2 \times 10^{-7}\] \exp[-17008/T\text{wall)].

(3)

with $\text{M} = \text{B}_2\text{H}_5$ (enhancement factor = 1), C_2H_2 (0.1), CH_4 (0.1), H (0.05). Test calculations assuming various different probabilities, γ_{BH_3}, for the catalysed decomposition of B_2H_6 on the HF surface indicate that this process might make a contribution to BH_3 production comparable to that from thermal dissociation only at $T_w = 2300$ K but, as previously[13], the measured fall can be reproduced reasonably well by assuming a marked increase in the loss probability γ_{BH_3} of B atoms at the HF surface at temperatures that exceed the melting temperatures of boron ($T_{\text{mp}} = 2350$ K) and TaB ($T_{\text{mp}} = 2313$ K). As an illustration of this effect, Fig. 3b shows the B atom concentration at $T_w = 2573$ K calculated assuming $\gamma_{\text{BH}_3} = 1$. The last two curves in Fig. 3b, for the case of a 0.0475% B_2H_6/1%CH_4/H_2 mixture with $T_w = 2300$ K, $\gamma_{\text{BH}_3} = 0$ and $T_w = 2573$ K, $\gamma_{\text{BH}_3} = 1$, respectively, successfully mimic the experimentally observed[13] fall in [B] at $d = 3$ mm upon introducing $F(\text{CH}_4) = 1$ sccm.

Preliminary calculations exploring the effect of O$_2$ impurity (at concentrations of 100 ppm, much less than the 500 ppm of B_2H_6 assumed in our base conditions) show conversion of BH$_3$ species to H$_2$O($\gamma = 1.2$) species (mainly through the reaction of B atoms with H_2O), but the B atom densities are only reduced seriously once $F(\text{O}_2)$ approaches $F(\text{B}_2\text{H}_6)$. Thus, we here focus on presenting the calculated species distributions above the substrate for the specific cases of a 0.1%$\text{B}_2\text{H}_6/0.01\%\text{O}_2/1\%\text{CH}_4$/$\text{H}_2$ mixture (i.e. $F(\text{B}_2\text{H}_6) = F(\text{O}_2)$) at $T_w = 2300$ K and an O$_2$-free 0.0475%B_2H_6/1%CH_4/H_2 mixture at T_w values of 2300 and 2573 K. Table 1 shows the calculated species concentrations at $r = 0$, $z = 0.5$ mm for these three sets of conditions. Inspection of these data clearly illustrates the reduction in [B] induced by the presence of O$_2$ (i.e. $[\text{B}]/([\text{B}]/([\text{B}]/([\text{B}])(\text{column} 2))/0.75$ (because $[\text{B}]/F(\text{B}_2\text{H}_6)$ for the O$_2$-free case). Given these densities, we can also estimate the diamond growth rate G which, under these conditions, will

Table 1

<table>
<thead>
<tr>
<th>Species</th>
<th>T_w/K</th>
<th>2300</th>
<th>2300</th>
<th>2573</th>
</tr>
</thead>
<tbody>
<tr>
<td>H</td>
<td>6.03E+14</td>
<td>6.05E+14</td>
<td>7.93E+14</td>
<td></td>
</tr>
<tr>
<td>CH$_3$</td>
<td>1.49E+13</td>
<td>1.49E+13</td>
<td>2.45E+13</td>
<td></td>
</tr>
<tr>
<td>C$_2$H$_2$</td>
<td>6.54E+12</td>
<td>5.40E+12</td>
<td>4.40E+12</td>
<td></td>
</tr>
<tr>
<td>CH$_4$</td>
<td>4.73E+09</td>
<td>4.72E+09</td>
<td>3.52E+09</td>
<td></td>
</tr>
<tr>
<td>CH</td>
<td>8.23E+07</td>
<td>8.27E+07</td>
<td>2.17E+08</td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>1.02E+08</td>
<td>1.02E+08</td>
<td>3.52E+08</td>
<td></td>
</tr>
<tr>
<td>C$_2$(X)</td>
<td>3.18E+08</td>
<td>3.21E+08</td>
<td>1.92E+09</td>
<td></td>
</tr>
<tr>
<td>C$_3$(X)</td>
<td>3.00E+07</td>
<td>2.99E+07</td>
<td>3.22E+08</td>
<td></td>
</tr>
<tr>
<td>C$_4$(X)</td>
<td>5.28E+04</td>
<td>5.27E+04</td>
<td>4.64E+05</td>
<td></td>
</tr>
<tr>
<td>H$_2$</td>
<td>1.70E+05</td>
<td>1.44E+05</td>
<td>9.19E+05</td>
<td></td>
</tr>
<tr>
<td>B$_2$H$_3$</td>
<td>1.90E+12</td>
<td>2.01E+12</td>
<td>2.34E+12</td>
<td></td>
</tr>
<tr>
<td>B$_2$H$_4$</td>
<td>6.64E+12</td>
<td>1.58E+12</td>
<td>3.10E+12</td>
<td></td>
</tr>
<tr>
<td>B$_2$H$_6$</td>
<td>8.12E+09</td>
<td>8.50E+09</td>
<td>1.19E+10</td>
<td></td>
</tr>
<tr>
<td>B$_3$H$_4$</td>
<td>1.36E+10</td>
<td>1.18E+10</td>
<td>3.38E+10</td>
<td></td>
</tr>
<tr>
<td>B$_4$H$_6$</td>
<td>5.59E+12</td>
<td>2.69E+13</td>
<td>2.09E+13</td>
<td></td>
</tr>
<tr>
<td>BH$_3$</td>
<td>8.88E+10</td>
<td>3.45E+11</td>
<td>1.52E+11</td>
<td></td>
</tr>
<tr>
<td>BH$_2$</td>
<td>3.86E+08</td>
<td>1.50E+09</td>
<td>9.18E+08</td>
<td></td>
</tr>
<tr>
<td>BH</td>
<td>5.78E+08</td>
<td>4.60E+08</td>
<td>4.54E+09</td>
<td></td>
</tr>
<tr>
<td>B</td>
<td>1.07E+11</td>
<td>1.73E+12</td>
<td>1.76E+12</td>
<td></td>
</tr>
<tr>
<td>CH$_3$H$_2$B$_2$H$_2$</td>
<td>2.96E+11</td>
<td>8.06E+11</td>
<td>7.92E+11</td>
<td></td>
</tr>
<tr>
<td>CH$_2$CH$_2$B$_2$H$_2$</td>
<td>6.08E+10</td>
<td>2.39E+11</td>
<td>1.61E+11</td>
<td></td>
</tr>
<tr>
<td>CH$_4$</td>
<td>9.41E+14</td>
<td>9.41E+14</td>
<td>8.92E+14</td>
<td></td>
</tr>
<tr>
<td>H$_2$</td>
<td>1.97E+17</td>
<td>1.97E+17</td>
<td>1.93E+17</td>
<td></td>
</tr>
<tr>
<td>H$_2$O</td>
<td>4.08E+12</td>
<td>4.08E+12</td>
<td>3.52E+12</td>
<td></td>
</tr>
<tr>
<td>CO</td>
<td>2.22E+12</td>
<td>2.22E+12</td>
<td>1.26E+13</td>
<td></td>
</tr>
<tr>
<td>CO</td>
<td>3.99E+12</td>
<td>3.99E+12</td>
<td>1.26E+13</td>
<td></td>
</tr>
<tr>
<td>CO</td>
<td>9.35E+11</td>
<td>9.35E+11</td>
<td>1.26E+13</td>
<td></td>
</tr>
<tr>
<td>$2F(\text{B}_2\text{H}_6)/F(\text{CH}_4)$</td>
<td>0.02</td>
<td>0.1</td>
<td>0.1</td>
<td></td>
</tr>
<tr>
<td>$[\text{B}]/[\text{CH}_4]$</td>
<td>0.007</td>
<td>0.12</td>
<td>0.07</td>
<td></td>
</tr>
<tr>
<td>G, mm/h</td>
<td>0.16</td>
<td>0.16</td>
<td>0.26</td>
<td></td>
</tr>
</tbody>
</table>

Fig. 3. a) Plots of [B] vs d using a boronized Ta HW, measured in 0.0475%B_2H_6/H$_2$ mixture at the specified T_w values. The superposed lines through the data are intended merely to guide the eye. b) Plots of calculated [B] vs d for 0.0475%B_2H_6/5%CH_4/H$_2$ ($x = 0$ or 1) mixtures and $T_w = 2073, 2300$ and 2573 K assuming B atom loss probability on the wire surface $\gamma_w = 0$ or $\gamma_w = 1$ (for $T_w = 2573$ K).
be dictated by the incident density of CH₃ radicals. The growth rate was estimated from the formula \[G = 0.075 \times 3.8 \times 10^{-14} \frac{C_{\text{sub}}}{T_{\text{sub}}} / \left(1 + 0.3 \times \exp\left(3430 / T_{\text{sub}}\right) \right) \quad (4) \]

The predicted [B]/[CH₃] number density ratio at a growing diamond surface (~0.07–0.12) is close to 2 \(F(B_2H_6) / F(CH_4) \approx 0.1 \) for the O₂-free cases. For a reliable estimation of the likely B incorporation rate a more detailed simulation employing the full-scale HFCVD reactor geometry and experimental characterization of B-doping level would be required. At this stage, the present modeling only allows us to conclude that B-doping of CVD diamond in HFCVD reactors is likely to be provided by B atoms, which are the dominant BHₓ species near the substrate and the HF.

Acknowledgements

The Bristol–Moscow collaboration is supported by a Royal Society Joint Project Grant. YuAM acknowledges support from RF Government for Key Science Schools grant No. 3322.2010.2.

References